3D Deep Learning

Anastasia Dubrovina Giorgos Bouritsas
Lyft (previously Stanford) Imperial College London

55 Imperial College
%a@%@ London

SGP Graduate School
6 July 2019, Milan

Deep Learning: Introduction

Q) DeepMind
o NIPS RNN/LSTM AlphaGo
irst i
ST Schmidhuber IMAGENET =l Microsoft
Perceptron Backprop 5(’ - ‘\}Jﬂ' CNN Autoencoder facebook Speech
Rosenblatt Werbos IpRAs) LeCun LeCun, Hinton Al Research recognition
I I I I I I I I I I I I I I I |
1958 1959 1982 1987 1995 1997 1998 1999 2006 2010 2012 2014 2015 2016 2017 2018
I I I I I I I I I I I I I I I I
Visual cortex Neurocognitron ~ SVM ImageNet “E* TensorFlow
Hubel&Wiesel Fukushima Vapnik amazon preakthrough OpenAl
Krizhevsky Movidius %
: T=5Lnm
First GPU Autonomous
cars

Slide: M. Bronstein

Breakthrough in image recognition

IMAGENE T Large Scale Visual Recognition Challenge

1,000 object classes
1,431,167 images

30 28.2
25
20
Deep learning
15
10
5.1
5 3.6 3.0 2.3 .
; - B ==
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedvetal Heetal Shao et al Huetal Russakovsky
Perronnin (AlexNet) Fergus Zisserman (GooglLeNet) (ResNet) (SENet) et al
(VGG)

Slide: CS231n@Stanford

Handcrafted vs Learned features

N
Feature

detector
_J

% — o \
~ = R}\
_.S) Classifier
o,)

Classical computer vision: hand-crafted features (e.g. SIFT) +

simple classifier (e.g. SVM)

— CAR

Slide: M. Bronstein

Handcrafted vs Learned features

N
Feature

detector
_J

— CAR

Classical computer vision: hand-crafted features (e.g. SIFT) +
simple classifier (e.g. SVM)

»[Neural /] - CAR

Modern computer vision: data-driven end-to-end systems

Slide: M. Bronstein

Convolutional Neural Networks (CNN)

Image Maps
Input
eCun et al. k XXN
Convolutions Fully Connec'red

Subsomplmg

2012

; p ! o3 193 138 ;048 Joas \dense
o7 128 A ey 1 1
; 55 s R
] O AN 13 13

.
Krizhevsky et al. -
224 R E 3|} ; 3. 3} [X
. et It B — >
L : &27 e 3|\ 113 13 dense’| |dense
M 'v'.""’ﬂSs 3N 1000
N 192 192 128 Max L L
2244}t rig Max 128 Max pooling 2048 2048
Yof 4 peoling pooling

of transistors GPUs # of pixels used in training

©

© © © ©o

©

©

3 convolutional + 1 fully
connected layers

1M parameters
Trained on MNISK 70K
CPU-based

tanh non-linearity

5 convolutional + 3 fully
connected layers

60M parameters

Trained on ImageNet
1.0M

GPU-based
RelLU, Dropout

Credit: CS231n@Stanford, M. Bronstein

Basics of deep learning

Supevised learning: classification example

e Data vectors x € R?
(e.g. for 512x512 images d ~ 10°)

@ Unknown classification functional
f:RY— {1,...,L} in L classes

@ Training set

S={(x; R, y; = f(x:)) }1—1

@ Parametric model fg of f

Slide: M. Bronstein

Supevised learning: classification example

o Data vectors x € R?
(e.g. for 512x512 images d ~ 10°)

@ Unknown classification functional
f:RY = {1,...,L} in L classes

@ Training set

S={(xi e RY, y; = f(x:)) }i—

. R4
@ Parametric model fg of f

Supervised learning: find optimal model parameters by minimizing the
loss £ on the training set

T
e = argcf)nin Z g(f@ (X’L')v y’L)
1=1

Slide: M. Bronstein

Simplest neural network: perceptron

Ld

Linear layer

Activation, e.g.

Parameters

Rosenblatt 1957

D_ﬂ,

y =g (Z WeTyp + b) = ¢ (WTX)
=1
£(x) = tanh(x)

layer weights w = (b, w1, ..., wyq), including bias

Slide: M. Bronstein

Multi-layer fully connected neural network

ﬁ§(><”(b - @
o <> \/ CD €>\<b_)

KK
Lglalp . @

Layer 1 Layer 2 Layer L — 1) Hidden layers

Linear layer xUT) = ¢ (WD x (1)

Activation, e.g. &(x) = tanh(x)

Parameters layer weights W{+1) ¢ Rd T xd®

Slide: M. Bronstein

Setting the number of layers and their sizes

3 hidden neurons 6 hidden neurons 20 hidden neurons

Image: CS231n@Stanford

Setting the number of layers and their sizes

3 hidden neurons 6 hidde neurons . 20 hidde neurons

Image: CS231n@Stanford

Transformed Original
Image: Christopher Olah

Neural network training: Backpropagation

ey
T J(—lid

Layer 1

D= E

DC

0

(1)

T
O = argmin E, where E = Z t(fo(Xi),y:)
G) .:

Layer 2

Layer L — 1

Image credit: M. Bronstein

Neural network training: Backpropagation

G - @) e
e - .

0

D (1)
T4 _d(_lid > d(l) (D e éb

Layer 1 Layer 2 Layer L — 1

T
O = argmin E, where E = Z t(fo(Xi),y:)
G) .:

ok oE 0oy

Chain rule: D " 5y 5D
J J

Image credit: M. Bronstein

Fully connected neural networks

@ Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

Credit: Yann LeCun

Stationarity and self-similarity

ol
,//,

///,{///////77rr;;,

Data is self-similar across the domain

Slide: M. Bronstein

Convolutional neural networks

&l Example: 200x200 image

& Example: 200x200 image » 400,000 hidden units with

» Fully-connected, 400,000 hidden units = 16 billion parameters 10x10 fields = 1000
» Locally-connected, 400,000 hidden units 10x10 fields = 40 params
million params » 10 feature maps of size
» Local connections capture local dependencies 200x200, 10 filters of size

10x10

Credit: Yann LeCun

Key properties of CNN

— CAR
— TRUCK
— VAN

ENEEEEEN

-

[] ws

|:| — BICYCLE

© Convolutional filters (Translation invariance+Self-similarity)
© Multiple layers (Compositionality)
© Filters localized in space (Locality)
© O(1) parameters per filter (independent of input image size n)

© O(n) complexity per layer (filtering done in the spatial domain)

© O(logn) layers in classification tasks

LeCun et al. 1989
Slide: M. Bronstein

Image-based deep network evolution

IMAGENE T Large Scale Visual Recognition Challenge

Year 2010
NEC-UIUC

sl PRI TR 1, .\,

Dense descriptor grid:
HOG, LBP

}

Coding: local coordinate,

super-vector

!

Pooling, SPM

!

Linear SVM

[Lin CVPR 2011]

Year 2012

SuperVision

[Krizhevsky NIPS 201 2]

Year 2014

GoogleNet

@ Pooling

@ Convolution
Softmax

@ Other

goowm

©

i i

it

[Szegedy arxiv 2014]

VGG

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

fc-4096
fc-4096
fc-1000

softmax

[Simonyan arxiv 2014]

Year 2015

[He ICCV 2015]

Slide: CS231n @ Stanford

Deep learning for 2D vs. 3D data

T
uh

YR

=7
e

o
K

AW,
PR

o

e
%
2\

s
'
oK

iﬁ
o
Y,

S
\/

S

/D
K

AYiy. 7
R

AVZAN

Zava
o

A

LY

AV
VAV

AT e R
AVAVAN o oo SRV G ANV ORI
Ay S sy T i Ve
NEAAAY TAYe ¥

VAR vghmmvmg
AT

i
e
Ry

o

74
s

i
5

Y
V)

s

ATt

vy

~

Deep Neural
network

Deep Neural

network
y _

-

y
“Stanford bunny”

“Stanford bunny”

epresentations

¢ Decislon
__— boundary
e ofimplict
. surface
.

e SDF >0

@ SDF <0

Signed
Image-based Volumetric Point Cloud distance- Mesh-based
based

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Course QOutline

™ Deep learning: short introduction
™ 3D representations
[J Deep learning for image and voxel-based representations
[J Deep learning on point clouds
[J Deep learning implicit representations
[J Deep learning on graphs and meshes

[J Frameworks, datasets, relates courses

3D Representations

Image-based Volumetric

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based representations: Rendered Views

C =D
| ﬁ 4 — CNN,
0 | — o U]——[CNN
o SN | pooling 2
b —{ o,
3D shape model
rendered with 2D rendered our multi-view CNN architecture
different virtual cameras images
Multi-view CNN

Hang Su et al., ICCV 2015

bathtub
bed
chair
desk
dresser

toilet

output

DUHUD

class

predictions

Image-based representations: Rendered Views

O]
I handle :
M headlight .
B frame -
B seat
M tank .
B wheel .
O
3D shape segmentation Local shape descriptor learning
E. Kalogerakis et al., CVPR 2017 Haibin Huang et al., TOG 2018

¢
. s

3D shape synthesis via silhouettes
A. Soltani et al., CVPR 2017

Y
ae

Image-based representations: Rendered Views

O
M handle :
M headlight .
B frame .
B seat
M tank .
W wheel O
O
3D shape segmentation Local shape descriptor learning
E. Kalogerakis et al., CVPR 2017 Haibin Huang et al., TOG 2018

J-%
.

3D shape synthesis via silhouettes O No i _
A. Soltani et al., CVPR 2017 O Invariance

Efficient, good results
& Memory

Simple, re-use standard
components of CNNs

& Not geometric

Image-based representations: Mapping to flat domain

i xyz [n.n,n)

Image: H.Hoppe

Deep learning 3D shapes
using geometry images
A. Sinha et al., ECCV 2016

Image-based representations: Mapping to flat domain

[nx’n y nz]

Image: H.Hoppe

Deep learning 3D shapes
using geometry images
A. Sinha et al., ECCV 2016

Algnmt
(network layer)

Gromov-Wasserstein CNN
D. Ezuz et al., SGP 2017

Seamless Toric Covers

H. Maron et al.,

SIGGRAPH 2017

Multi- chart Generatlve
Surface Modeling

H. Ben-Hamu et al.,

SIGGRAPH Asia 2018

Image-based representations: Mapping to flat domain

(n.n y'nz]

4

Image: H.Hoppe
Deep learning 3D shapes using

geometry images Seamless Toric Covers Multi-chart Generative Surface Modeling Gromov-Wasserstein CNN
A. Sinha et al., ECCV 2016 H. Maron et al., SIGGRAPH 2017 H. Ben-Hamu et al., SIGGRAPH Asia 2018 D. Ezuz et al., SGP 2017

Efficient
Deformation invariant®

& Mapping distortion

& Genus-zero surfaces

Surface Networks via General Covers
N. Hain et al., arXiv 2019

*If the mapping is deformation invariant

3D Representations

Volumetric

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Volumetric Representations

TN X] F B
i — .."."

object label 10 1200

= RS A
Nz ‘ 3

512 filters of
wier (27 1RGP
160 filters of / n ’ . l . ” ‘

stride 2 AN

I RSSO R

A

i ‘
74T

ll,‘ ‘,\\‘

AR

/ ,” \ \

T
fenndss @ e @

¥ ‘ t* ~ , p Q Conv(3231)+PooI(2)

[: 6><6><6 @

'!‘5 ‘ .i § FuII(128) §

3D voxel input Pedestrian FuII(K)/Output Toilet

Occupancy Grid
32x32x32

48 filters of
stride 2

3D ShapeNets VoxNet
Z.Wu et al., CVPR 2015 Maturana and Scherer, IROS 2015

Volumetric Representations

ﬁé) Decoder
=HZZ
| '
[A I
____.{I- iﬁ:_:: ——4-—- g) -
s I8
512):4)(4)(4 //Lﬂ:_» _._/,4/_76 i\ | Encoder @@ ..@
256x8x8x8 : (@@)
128x16x16%x16 BAx32x32X32

N

G(z) in 3D Voxel Space

3D_GAN b4xb64x64
J. Wu et al., NIPS 2016

3D Convolutional LSTM

3D Recurrent Reconstruction
C. Choy et al., ECCV 2016

GRASS: Generative Recursive Autoencoders
Jun Li et al., SIGGRAPH 2017

Decomposer-Composer Network
Dubrovina et al., ICCV 2019

Volumetric Representations

|
S - CF

[o
= @&::ﬂ,_ T =t
512></4><4><4 P -;*26 i [

256x8x8x8 et h
RS 64x32x32x32
z G(z) in 3D Voxel Space
3D_GAN b64x64X64

J. Wu et al., NIPS 2016

GRASS: Generative Recursive Autoencoders
Jun Li et al., SIGGRAPH 2017

Simple
& Coarse
@ Memory

& No invariance

A
Encoder @@ Decoder

3D Convolutional LSTM

3D Recurrent Reconstruction
C. Choy et al., ECCV 2016

Decomposer-Composer Network
Dubrovina et al., ICCV 2019

{s

s

Octree based-networks

Volumetric Representations

e
()
2
I
(&)
O

.-+ -+« convolution pooling

pooling

convolution

e 3(qq

normal field

/

%
)
%

octree input (d-depth)

O-CNN

Octree
Generating

Networks

M. Tatarchenko et al. [ICCV 2017], G. Riegler [CVPR 2017], P.-S. Wang et al. [SIGGRAPH 2017]

Volumetric Representations: Sparse convolutions

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Network
Choy et al., CVPR 2019

Course QOutline

™ Deep learning: short introduction
™ 3D representations
M Deep learning for image and voxel-based representations
[J Deep learning on point clouds
[J Deep learning implicit representations
[J Deep learning on graphs and meshes

[J Frameworks, datasets, relates courses

3D Representations

Point Cloud

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

PointNet

 End-to-end learning for irregular point data

e Unified framework for various tasks

l PointNet

mug? ~
¢ g
“s table? et
¥7
o
car?
Classification Part Segmentation =~ Semantic Segmentation

PointNet, Qi et al., CVPR 2017

PointNet

e Permutation invariance (equivariance)

Point cloud is a set of unordered points

3 + Nr 3+ NF

> >

represents the same set as N

v v

e (Partial) rigid transformation invariance

Point cloud rotations should not alter classification results

Slide: Charles R. Qi

PointNet

e Permutation Invariance

PointNet (vanilla)

‘------
Il = = E = E =E =B = = =E =Hm =

g (h(xy1), h(xy), ..., h(x,)) is symmetric (w.r.t. order of input points)

Slide: Charles R. Qi

PointNet

e Transformation Invariance

4)
T-Net | transform
params
. J
/ ™ \
(P
> » Transform
= . J
iInput
point cloud

transformed
point cloud

rest of the
network...

Slide: Charles R. Qi

PointNet

e Memory requirement decrease

Space Cost (#params)

100M s ulti-view

volumetric

10M
Saves 80% memory

1M

MVCNN Subvolume PointNet
[Su et al. 2015] [Qi et al. 2016] [Qi et al. 2017]

e Comparable decrease in computation time

Slide: Charles R. Qi

PointNet limitations

Hierarchical feature learning
multiple levels of abstraction

512 filters of
stride 1

160 filters of
stride 2

48 filters of
stride 2

2

——————

43 1°

3D CNN [Wu et al.2015]

3D voxel input

V.S.

Global feature learning
either one point or all points

(1,2,3) —= MLP max
(2,3,4) ——{ MLP 2
. J h —_
| ’-U
(13,1) —{ mp |

PointNet (vanilla) [Qi et al.2017]

Slide: Charles R. Qi

PointNet limitations

Hierarchical feature learning Global feature learning
multiple levels of abstraction either one point or all points
) No local context
48 filters of h V.S. A
Limited translation
invariance
3D CNN [Wu et al.2015] PointNet (vanilla) [Qi et al.2017]

Slide: Charles R. Qi

PointNet++
Basic idea: Apply pointnet at local regions.

v Hierarchical feature learning
v Translation invariant

v Permutation invariant
Y

¢
oo / tY \

LN] PR A LN |
* * *
* * L 4
. R .
. *
t‘ L °,
»
.
ns®

. X Y pointnet
K : X 3

*
L
L/
X 3 N J
>
*

.

*s
*
. * *
.'. R
k 1 J

K points in local
coordinates (u,v)

an
R
*
*
*
‘0
@
(]

N points in (X,Y)

PointNet++, Qi et al., NeurlPS, 2018

PointNet++: Complete architecture

Hierarchical point set feature learning

—_— —

sampling & pointnet
grouping

AN

B
PR
.

—>
sampling &
grouping

s

pointnet

~
set abstraction

~
set abstraction

pointnet

= ‘:7/0&

fully connected layers

class scores

Slide: Charles R. Qi

PointNet++: Complete architecture

—>
interpolate

unit
pointnet

B
PR
.

Classification

— —

sampling & sampling &
grouping grouping

N\ AN J
Y Y

set abstraction set abstraction

—

pointnet

s

pointnet

pointnet

skip link concatenation

interpolate

pointnet

»\'0‘ 7 7 X “,;//4
SRS

o

{

) 254
I OELERA
A

y - o8

I
class scores

fully connected layers

Slide: Charles R. Qi

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

e (Capture local geometric features of point clouds with
EdgeConvolution (EdgeConv)

iY

| | . . .
.0“ . ..’s‘ . ‘0“ * ‘.05‘

® - o o -

e @ » X : : — U pointnet
. 9oelee® ., Goe
’...llll““‘ . ‘..‘.III““‘

y r K J

O O
o O

K points in local

N points in (X,Y) coordinates (u,v)

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

e (Capture local geometric features of point clouds with
EdgeConvolution (EdgeConv)

Y

A

Ty
& ®
.
.
»|
.
ns®

» X

@
X 3. X/

.
A 3
.
L
&
U
3
R

)
R
.
0
*e
@ [

K points in local
coordinates (u,v)

N points in (X,Y)

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

e (Capture local geometric features of point clouds / features
with EdgeConvolution (EdgeConv)

X. X.
Ji2 Ji2
€

X O @ | | . O B eijl, O
i \ / EdgeCony Ji3 K /
€
iJi1
/ xN / X\.
C..
X. : €. X.
Jil i ijis Jil
© O
X. X.
Jis Jis

x @ x®
Ji4 Ji4

* Edge convolution operator is defined as

ho(x;, xj) = hg(x;, x; — Xx;)

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

W
+F

c
© | s R
= , ... ; =
o ; - N ™ feature concat. 85
S |- EdgeConv — & |- EdgeConv — 8 [— EdgeConv — 8 [& < g'
g ® © © multi-layer perceptron| g 3]
R I S I 2

Point Convolutional Neural Networks by Extension Operators

* A different approach for point cloud processing

L WY
e o o.
O

.

0“‘Q
%
% o *® °°° ‘™
©
¥ 4
0‘0’.‘.‘,

© :”’

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

* A different approach for point cloud processing
- extend the samples to a continuous function
- utilize it to perform continuous convolution

& %

‘r

|

o

O& :

‘~ . PP 'Y L L ™
o

0’0‘."’

o :..’

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

Vi

Restriction

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

OXZRXOOng

 Extension operator Ex

* Weights inverse

— Z fijli(), é{ P proportional to

point density

li(x) = cw; P(|x — x;|) ”k
Voronoi Diagram
Gaussian RBF

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

Convolution Restriction

OXZRXOOng

e (Continuous convolutional kernels

L
k(x) = 2 k, ®(x —T))
[=1

Kernel layout

Learnable parameters (can also be leamt)

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

Vi

Convolution Restriction

OX — RX o(Qo 5X
e Extension + convolution: closed form solution

Exy *k(x) = z a;k; ®(x —x; — T))

1

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

Convolution Restriction

OX — RX oo 5X
e Extension + convolution: closed form solution

Exy *k(x) = Z a;k; ®(x —x; — T))

il
* Restriction by sampling

Credit: Matan Atzmon et al.

Point Convolutional Neural Networks by Extension Operators

* |Image convolution properties
e Simplicity (Sparse+Linear)

* Translation equivariance and locality

* Point convolution properties
* QOperate intrinsically
* QOrder equivariance

* Robustness to sampling

Credit: Matan Atzmon et al.

Surface-based Convolution

. A S R P Surface Convolution

Tangent Convolutions SurfConv
[Tatarchenko et al. 2018] [Chu et al. 2018]

Classic Representations + NN

ShapeContextNet
[Xie et al. 2018]

Kd-Network
Klokov et al. 2017 ' '
[v] Slide: Charles R. Qi

Hybrid Networks: Grids + Points

Voxel Random Stacked Voxel
Sampling Feature Encoding

Partition Grouping

VoxelNet
- [Zhou et al. 2018]

ected Neural Netl

|E|ement-wise Maxpooll

|FuIIy Conn

Point-wise Point-wise Voxel-wis¢
Feature-1 Feature-n Feature

Point Network

k-nearest neighbor for each point

RS S . 8
» X \ | E— = %
- . m 1 = 1x128 z o
Normal estimation g IS oy N :
[Hashimoti and Saito, CVPR 2019] =2 Nx19 =
g Voxel Network %‘
< o
— 3D U-Net [» > <
convet points e convert voxels =
into voxels into points
32x32x32x 1 32x32x32x64

SPLATNet
[Su et al. 2018]

Credit: Charles R. Qi

Point Cloud Convolutions

Continuous
Convolution @

.9(y1 - Xo) g(¥3 - Xa) g

/ z;fk g Xo)

Deep Parametric Continuous Convolution

[Wang et al. 2018]

& q3
2 g(p7q3)
A @
g(p-q2) ‘
g(p-ql)
PN 44 @l
<. q4

g(p-q5)

qs

<> \
Filter Values | = - - \,\\-\\\\
: - - v
—l
H e* &Q&
Kernel Points CP&\
3

< Kernel Point Convolution

S [Thomas et al. 2019]

Non-uniform sampling

A Ours
@ °
=
g °

Space

A
g o
G >
S Space °

SpiderCNN
[Xu et al. 2018]

Monte-Carlo Convolution

[Hermosilla et al. 2018]

Slide: Charles R. Qi

Point cloud deep learning: Applications

l PointNet
S mug? '
E{"x v table?
car?
Classification Part Seg;;érne;tation Semantic Segmentation
Input s ICP

DCP+ICP fﬁr‘“

i

DCP

Point cloud alignment Object detection in lidar scans

Qi et al. [CVPR 2017], Li et al. [CVPR 2019], Wang and Solomon [arXiv], Qi et al. [CVPR 2018]

Point cloud deep learning: Normal estimation

PCPNet

normals

noisy input point cloud

' PCPNet
q

normal_s
mean curvature mean curvature

Guerrero et al. [Eurographics 2018], Boulch and Marlet [SGP 2016], Hashimoto and Saito [CVPR 2019]

Point cloud deep learning applications: generative models

il
)

3D Point Cloud
(a) Possible Inputs (b) Output Mesh from the 2D Image (c) Output Atlas (optimized)

Fan et al. [CVPR 2017], Yin et al. [SIGGRAPH 2018], Achlioptas et al. [[CML 2018], Groueix et al. [CVPR 2018]

Point cloud deep learning applications: proxy for mesh

Probability
Distribution

Placement
Network

|:> Retrieval
Network

= Partial Component
/ Assembly Embedding
[Space

Shape completion

q

XXX

Learning Consistent Semantic Structures

Flow Module e
J Wi £ \ - Y » Y% ‘
V| e ANMYVA\ WAL "\\\
N
A B C D E

Part Induction from Articulated Object Pairs

Sung et al. [SIGGRAPH Asia 2017], Li et al. [SIGGRAPH Asia 2018], Sung et al. [NeurlPS 2018]

Decision
boundary
of implict

< L
e SDF >0
..

2 o
@ SDF <0

Deep Learning Implicit Representations

Image credit: J. Park

Implicit Function Representations

e Define a function f: R° — R with value < 0 outside the

shape and > 0 inside

Credit: O. Diamanti, CS468

Implicit Function Representation

e Define a function f: R> — R with value < 0 outside the

shape and > 0 inside

Credit: O. Diamanti, CS468

Implicit Function Representation

e Define a function f: R> — R with value < 0 outside the

shape and > 0 inside

Credit: O. Diamanti, CS468

Implicit Function Representation

e Define a function f: R> — R with value < 0 outside the

shape and > 0 inside

e Extract the zero-set {x: f(x)=0}

Credit: O. Diamanti, CS468

Extract the surface

e Given an implicit representation, create a triangle mesh

that approximates the surface: Marching cubes

F(x)=0->

surface

F(x)<0->
inside

F(x)>0->
outside

Credit: O. Diamanti, CS468

Extract the surface: Marching Cubes

e 2506 different cases - 15 after symmetries, 6 ambiguous

CaSes

e More subsampling rules — 33 unique cases

g
SIS

the 15 cases

Credit: O. Diamanti, CS468

Shape Completion using 3D-Encoder-Predictor

3D Shape
Classification
Network
| >

Distance Field & State Distance Field
323 Voxel Grid 323 Voxel Grid

Input Scan
Network

3D Encoder-Predictor
3D-EPN Prediction

Dai et al. [CVPR 2017]

Shape Completion using 3D-Encoder-Predictor

——
] 3D Shape S =
) Classification S =
3 ,R' Network P x %
& - n °,' o (Y]
e - 3 ~
= o 2 Q
Q ¢ a2 2
L~ ’ o Q,
2 i - S W
Q
.9,)
Distance Field & State Distance Field
323 Voxel Grid 323 Voxel Grid
v 3D Classification Network " A
32 e 2 E _ E \
32 - a :
4 N s
32 e : N = LR e
32 dtﬁ 4[% AEE 4 y, 1 1 ; 4 8 3 16 %6 32
~ 8 4 MR ol
y , 32 T 8 4 - i) B 32

. 640[9 640 640 ‘ ,
Distance field + N | | I | T I I T Distanc:? Field

Observed state skip connections Prediction
Figure 1: Network architecture of our 3D Encoder-Predictor Network.

Dai et al. [CVPR 2017]

Shape Completion using 3D-Encoder-Predictor

—— . el
¢ 3D Shape § . Database Prior “ §
) Classification = S : c g &
< © = ! S c =
S ,r_' Network g x % o 5 € S
A ’ r 9) ° & =
-~ - 3 A~) Q
v o Q, v v
3 ! 22| = £ &
c ™= S = Q =2 §
& I i A | = A iz
) S
W
Distance Field & State Distance Field Distance Field
323 Voxel Grid 323 Voxel Grid 1283 Voxel Grid
e 3D Classification Network — A
32 - |-
..'._‘_ E ‘::E \ 32
‘:/:. “"_ \ " - '. ..." 8 16
Ey) - . 4 :
8 1 ,"' . .'(’ .) . A ,‘;*"_’,'.'.- n :j'.'.'..- £ -
32 \ : dA— &1 1 L 1.""‘(‘j ,,‘E@ Nl 1 . JiS .
32 s [“ﬁa’ 4 T - | S e
" 8 4 il loblof
\ , 32 1875 8 4 Ak 6%6% 32
] |] 32 | | | 640[9 T I I L T)
Distance field + | Distance Field
Observed state skip connections Prediction

Figure 1: Network architecture of our 3D Encoder-Predictor Network.

Dai et al. [CVPR 2017]

Deep Marching Cubes

Implicit surface prediction

PR
* Bneratic - : ----- E
* . . Meshing
ssee . -
Seses?
Observation Point set

Explicit surface

(a) Sparse Point Prediction (e.g., [17])

L

g

————— >
Marching
Cubes
Observation Implicit surface Explicit surface
(b) Implicit Surface Prediction (e.g., [5,45])
< b
A e
L 2 L 2
* Decoder —
* *
seee,
MR
Observation Occupancy Geometry

Explicit surface

(c) Explicit Surface Prediction (ours)

Liao et al. [CVPR 2018]

Deep Marching Cubes

* Proposed alternative differentiable Marching Cubes

Oi 5 = 1 Oi+1,5 = 1

®
)
Lol T

"j (1)
. Titl,5
f‘fan
9/,
\
2(2)

a1
. t,)+'. .

0;i j4+1:=10 0i41,541 =10

(b) Differentiable MC

Per-vertex, occupancy probabilities O
iInstead of signed distance

Vertex displacements X to specify
triangle vertices

Defined differentiable distribution over
meshes, used for back-propagation

Liao et al. [CVPR 2018]

Deep Marching Cubes

pe B
‘ ‘ PP PP PP g

Liao et al. [CVPR 2018]

Learning decision boundary of occupancy classifier [CVPR 2019]

* “Occupancy Networks: Learning 3D Reconstruction in Function Space”, by
Mescheder et al.

* “Learning Implicit Fields for Generative Shape Modeling”, by Chen and
Zhang

* “DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation”, by Park et al.

. r : \
o - -
® = . o .
° L |)
® °
o ® ° °
o
SRR
SRR R AR ek
3"; S ? i q

(a) Voxel (b) Point (c) Mesh K(d) Oursj

Image credit: L. Mescheder

Learning decision boundary of occupancy classifier [CVPR 2019]

Implicit field learning [Chen and Zhang]

2048
] 1024

] 512
] 256
] 128

1
—| |—| |— —>|:|--—>|:|

> Concatenate

——>» Copy and Concatenate
- — — — —> FC, Leaky RelLU
-=—> FC, Sigmoid

Occupancy networks [Mescheder et al.]
3

. ! !
¥ Bia Bi2
\ i,1 7,2
/L; v
Br+1
YL+1
= el e
T —> > -
CBN CBN CBN
3 256 256 256] 256 1
fi =1,..., 5

Learning decision boundary of occupancy classifier [CVPR 2019]

Implicit field learning [Chen and Zhang]

2048

1 = L * Predict point occupancy
Bdineinglne —’|:|“*':' e Supervised training using
. ground truth occupancy
S TR e Use multi-resolution
surface extraction
Occupancy networks [Mescheder et al.] s
= [
L ngzj
'L» C ﬁi ﬂi mark voxels subdivide voxels evaluate network
: | | SIS
*] CBN | m _@_ CB;I] refine using gradients simplify mesh marching cubes
I [- - -] - . Image: L. Mescheder

Learning decision boundary of occupancy classifier [CVPR 2019]

Input 3D-R2N2 PSGN Pix2Mesh AtlasNet Our

7‘“‘&“@% Né\ 3-5\

Implicit field learning [Chen and Zhang]

Occupancy networks [Mescheder et al.]

Mesh-based representation

Mesh-based

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

© Compact: Only the surface is encoded (contrary to volumetric
methods)

© Flexible: Only a handful of points can represent large
approximately planar surfaces

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

© Compact: Only the surface is encoded (contrary to volumetric
methods)

© Flexible: Only a handful of points can represent large
approximately planar surfaces

© No post processing needed to render a continuous object

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

© Compact: Only the surface is encoded (contrary to volumetric
methods)

Flexible: Only a handful of points can represent large
approximately planar surfaces

@)
© No post processing needed to render a continuous object
@)

Invariance can be built-in (e.g invariance to isometries by
operating on the metric)

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

© Compact: Only the surface is encoded (contrary to volumetric
methods)

© Flexible: Only a handful of points can represent large
approximately planar surfaces

© No post processing needed to render a continuous object

© Invariance can be built-in (e.g invariance to isometries by
operating on the metric)

® Non-euclidean operators needed

Pros and Cons of Mesh representations

© Accurate approximations of the continuous surface

© Compact: Only the surface is encoded (contrary to volumetric
methods)

© Flexible: Only a handful of points can represent large
approximately planar surfaces

© No post processing needed to render a continuous object

© Invariance can be built-in (e.g invariance to isometries by
operating on the metric)

® Non-euclidean operators needed

Birth of Geometric Deep Learning

What is Geometric Deep Learning?

Going beyond Euclidean data

" s RO | 1707 | sssum o

Bronstein et al., SPM 2017

What is Geometric Deep Learning?

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia'? Jessica B. Hamrick', Victor Bapst!,
Alvaro Sanchez-G: !, Vinicius i'. Mateusz Mali il
Andrea Tacchetti', David Raposo’, Adam Santoro', Ryan Faulkner',

Caglar Gulcehre!, Francis Song!, Andrew Ballard, Justin Gilmer?,
George Dahl®, Ashish Vaswani’, Kelsey Allen®, Charles Nash',
Victoria Langston!, Chris Dyer!, Nicolas Heess,

Daan Wierstra', Pushmeet Kohli', Matt Botvinick',

Oriol Vinyals', Yujia Li', Razvan Pascanu’

'DeepMind: Google Brain; *MIT; *University of Edinburgh

Abstract

Artificial intelligence (AI) has undergone a renaissance recently, making major progress in
key domains such as vision, language, control, and decision-making. This has been due, in
part, to cheap data and cheap compute resources, which have fit the natural strengths of deep
learning. However, many defining characteristics of human intelligence, which developed under
much different pressures, remain out of reach for current approarhes In pal'llc“lar, genemhzmg
beyond one’s experiences—a hallmark of human i
challenge for modern AL

The following is part position paper, part review, and part unification. We argue that
combinatorial generalization must be a top priority for Al to achieve human-like abilities, and that
structured representations and computations are key to realizing this objective. Just as biology
uses nature and nurture cooperatively, we reject the false choice between “hand-engineering”
and “end-to-end” learning, and instead advocate for an approach which benefits from their
complementary strengths. We explore how using relational inductive biases within deep learning
architectures can facilitate learning about entities, relations, and rules for composing them. We
present a new building block for the Al toolkit with a strong relational inductive bias—the graph
network—which generalizes and extends various approaches for neural networks that operate
on graphs, and provides a straightforward interface for manipulating structured knowledge and
producing structured behaviors. We discuss how geaph networks can support relational reasoning
and lization, laying the ion for more i i
and flexible patterns of reasoning. As a companion to this paper, we have also released an
open-source software library for building graph networks, with demonstrations of how to use
them in practice.

Battaglia et al.,arxiv 2018

What is Geometric Deep Learning?

Goal:

@ Design learnable operators

@ Optimise them w.r.t a specific task

How?

@ Incorporate appropriate inductive biases related to the data structure
and the task

@ Encode priors and desired properties

Inductive bias of the structure of the data: Domain

Fixed Domain

Social network registered 3D meshes
(fixed graph)

Bogo et al., CVPR 2017

Inductive bias of the structure of the data: Domain

Different Domains

o b
B e A

e ey

Molecules 3D meshes with different connectivity

Simonovsky and Komodakis, ICANN 2019

Inductive bias of the structure of the data: Domain

Unknown Domain(s)

Social network with unknown connectivity 3D point clouds
(graph metric has to be learnt) (no triangulation)

Inductive bias of the task: Graph classification

Molecule classification Shape retrieval

Duvenaud et al., NIPS 2015

Inductive bias of the task: Vertex classification

Community detection Shape correspondences

Inductive bias of the task: Graph synthesis

\égﬁ ’*w ‘ ‘

Topology generation Mesh synthesis
(topology and signal)

You et al., ICML 2018, Smith et al., ICML 2019

Priors and desired properties: Revisiting CNNs

C3: f. maps 16@10x10
INPUT gé zlg)a(\lzlge maps S4: f. maps 16@5x5
32x32 S2: f. maps
6@14x14

‘ Full conrkection | Gaussian connections
ing Full ion

St

Convolutions Subsampling Convolutions

© Stationarity (Convolutions)

LeCun et al. 1989

Priors and desired properties: Revisiting CNNs

C3: f. maps 16@10x10
INPUT gé zlg)a(\lzlge maps S4: f. maps 16@5x5
32x32 S2: f. maps
6@14x14

‘ Full conrkection | Gaussian connections
Convolutions Subsampling Convolutions St ing Full ion

© Stationarity (Convolutions)

© Compositionality (Spatial localisation of filters + Hierarhical
structure)

LeCun et al. 1989

Priors and desired properties: Revisiting CNNs

C3: f. maps 16@10x10
INPUT gé zlg)a(\lzlge maps S4: f. maps 16@5x5
32x32 S2: f. maps
6@14x14

‘ Full conrkection | Gaussian connections
Convolutions Subsampling Convolutions St ing Full ion

© Stationarity (Convolutions)

© Compositionality (Spatial localisation of filters + Hierarhical
structure)

© O(1) parameters per filter (independent of input image size n)
© O(n) complexity per layer (filtering done in the spatial domain)
© O(logn) layers in classification tasks

LeCun et al. 1989

Priors and desired properties: Going non-euclidean

o Do this properties hold for non-euclidean
domains?

o Assumption: Non-Euclidean data are locally
stationary and manifest hierarchical structures

Challenges

@ How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

@ Permutation invariance: Graph structured data do not admit a global
ordering

How to achieve permutation invariance?

Graph (permutation) Mesh (rotation)

How to achieve permutation invariance?

Graph (permutation) Mesh (rotation)

Challenges

@ How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

@ Permutation invariance: Graph structured data do not admit a global
ordering

@ Transferability of the filters across local neighbourhoods (analogous
to translation)

How to transfer filters across the same non-euclidean
domain?

=

Euclidean Non-Euclidean

How to transfer filters across the same non-euclidean
domain?

=

Euclidean Non-Euclidean

Challenges

@ How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

@ Permutation invariance: Graph structured data do not admit a global
ordering

@ Transferability of the filters across local neighbourhoods (analogous
to translation)

© Transferability of the filters when dealing with multiple graphs

How to transfer filters across different domains?

Image analogy: Can we use the same filters for low and high resolution
images?

Challenges

@ How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

@ Permutation invariance: Graph structured data do not admit a global
ordering

@ Transferability of the filters across local neighbourhoods (analogous
to translation)

© Transferability of the filters when dealing with multiple graphs
@ Transferability of the filters when dealing with multiple graphs

@ Scalability: How to make them fast (and ideally parallelizable)?

Different Perspectives: Graph Convolutions vs Message
Passing

@ Graph Convolutions

Spectral Patch Operator based (aka Spatial)

hy

h, ..
O\O /O
@ Message Passing 6 O

O—

(figure by Thomas Kipf)
o & O

@ They boil down to the same thing!

© Graphs: Fundamentals

Graphs: notations and basics

o Weighted undirected graph G = (£€,V)
with vertices V = {1,...,n}, edges
ECVY V.

o Edge weights w;; > 0 for (i,j) € £ and
Vertex weights a; > 0 for i € V

@ Functions over the vertices
L2(V) = {f : V — R} represented as
vectors £ = (f1,..., fn)

@ Functions over the edges
L2(&) ={F:& - R}

fi

Graphs: notations and basics
e Laplacian A : L2(V) — L*(V)

Z wi;— Y wif

O J:(i,5)€E

difference between f and its local average

[

Graphs: notations and basics
f.
o Laplacian A : L2(V) — L2(V) y

Z wig — Y wiif

O J:(i,5)€E

difference between f and its local average

@ Represented as a positive semi-definite n x n matrix A = A=}(D - W)
where W = (w;;), A = diag(ai,az ... a,) and D = diag(}_,,; wi;).
Symmetric Normalized Laplacian: A = I — D~'/2WD~1/2

© Graph Convolutions
@ Spectral Approaches

@ Patch-based approaches

Different Perspectives: Graph Convolutions vs Message
Passing

@ Graph Convolutions

Spectral Patch Operator based (aka Spatial)

@ Message Passing O\\

Revisiting Euclidean Convolution

e Given two functions f, g : [—m, 7] — R their convolution is a
function

v
(fxg)x)= [f(@")g(z—2")dz'
— T
@ Traditional convolution needs to translate the kernel g across
different locations of the domain.
@ The notion of translation in a non-euclidean domain is elusive.

@ Convolution theorem: “The fourier transform of the convolution
between two functions is the dot product of their fourier coefficients”

(fx9)=F HF() - Flg)}

@ Fourier transform on a non-euclidean domain?

Convolution Theorem

@ Fourier basis in non-euclidean domains: eigenvectors of the
Laplacian @ = i.e.
Ad = PA

@ Convolution theorem:“The fourier transform of the convolution
between two functions is the dot product of their fourier coefficients'

(fx9)=F HF() - Flg)}

@ Spectral convolution of f,g € L?(V) can be defined by analogy

frg= > (F,dr)200)(8 Br)2(v) Pr

E>1

Convolution Theorem

@ Fourier basis in non-euclidean domains: eigenvectors of the
Laplacian @ = i.e.
Ad = PA

@ Convolution theorem:“The fourier transform of the convolution
between two functions is the dot product of their fourier coefficients'

(fx9)=F HF() - Flg)}

@ Spectral convolution of f,g € L?(V) can be defined by analogy

frg= > (F,dr)200)(8 Ir)r2(v) Pr

E>1

product in the Fourier domain

Convolution Theorem

@ Fourier basis in non-euclidean domains: eigenvectors of the
Laplacian @ = i.e.
Ad = PA

@ Convolution theorem:“The fourier transform of the convolution
between two functions is the dot product of their fourier coefficients”

(f*g) = F HF(f) Flg)}
@ Spectral convolution of f,g € L?(V) can be defined by analogy

frg= > (F,dr)200)(8 Ir)r2(v) Pr

E>1

product in the Fourier domain

inverse Fourier transform

Convolution Theorem

e In matrix-vector notation:

frxg= P - (@Tg)o(@'f)

S

-~

inverse Fourier L oquct in the Fourier domain

frg=®G(P'f)
where G = diag(g1, gs - - - gn), the fourier coefficients of ¢

Convolution Theorem

e In matrix-vector notation:

frxg= P - (@Tg)o(@'f)

S

-~

inverse Fourier L oquct in the Fourier domain

frg=®G(P'f)
where G = diag(g1, gs - - - gn), the fourier coefficients of ¢

e G can be learned!

Spectral graph CNN

Convolutional layer expressed in the spectral domain
un i=1,....d
F/': @G@TF '_ yeeey Uin
L S I e

where £ a non-linearity, G; ; = n x n diagonal matrix of filter coefficients
for the input dimension ¢ and output dimension j.

Bruna et al., ICLR 2014

Spectral graph CNN

Convolutional layer expressed in the spectral domain
o, i=1,....d
A TR =4, Qin
FJ é. ZéGZJ@ Fi j:17~-~7dout
=1

where £ a non-linearity, G; ; = n x n diagonal matrix of filter coefficients
for the input dimension i and output dimension j.

® No guarantee of spatial localization of filters

Bruna et al., ICLR 2014

Spectral graph CNN

Convolutional layer expressed in the spectral domain
o, i=1,....d
A TR =4, Qin
FJ é. ZéGZJ@ Fi j:17~-~7dout
=1

where £ a non-linearity, G; ; = n x n diagonal matrix of filter coefficients
for the input dimension i and output dimension j.

® No guarantee of spatial localization of filters
©® O(n) parameters per layer

Bruna et al., ICLR 2014

Spectral graph CNN

Convolutional layer expressed in the spectral domain
o, i=1,....d
A TR =4, Qin
FJ é. ZéGZJ@ Fi j:17~-~7dout
=1

where £ a non-linearity, G; ; = n x n diagonal matrix of filter coefficients
for the input dimension i and output dimension j.

® No guarantee of spatial localization of filters

©® O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms
&7 ® (no FFT on graphs)

Bruna et al., ICLR 2014

Spectral graph CNN

Convolutional layer expressed in the spectral domain
un i=1,....d
F/': @G@TF '_ s ey in
! é(; i l)]:17~-~7dout

where £ a non-linearity, G; ; = n x n diagonal matrix of filter coefficients
for the input dimension i and output dimension j.

® No guarantee of spatial localization of filters

©® O(n) parameters per layer

® O(n?) computation of forward and inverse Fourier transforms
&7 ® (no FFT on graphs)

© Filters are basis-dependent = does not generalize across graphs!

Bruna et al., ICLR 2014

ChebNet: Spectral graph CNN with polynomial filters

Parametrise filter G, as a polynomial of the eigenvalue matrix

r
G = Z OlkAfn
k=0

where a = (a, ...,)" is the vector of filter parameters

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters
Parametrise filter G, as a polynomial of the eigenvalue matrix
G = ZakAfn
k=0

where a = (a, ...,)" is the vector of filter parameters

Now the convolution becomes

frg=3) arA"d'f
k=0

frg = Z ap A*f
k=0

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in Z: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 17 ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in 7/: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 1’ ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support
© O(1) parameters per layer

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in 7/: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 1’ ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support
© O(1) parameters per layer

© No explicit computation of @7, ® = O(|€)) computational
complexity

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in 7/: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 1’ ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support
© O(1) parameters per layer

© No explicit computation of T, ® = O(n) computational
complexity (assuming sparsely-connected graph)

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in 7/: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 1’ ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support
© O(1) parameters per layer

© No explicit computation of T, ® = O(n) computational
complexity (assuming sparsely-connected graph)

® lIsotropic kernels

Defferrard, Bresson and Vandergheynst, NIPS 2016

ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coefficients)

d; T
in 7/: 17...,din
F/j = 6 (Z Z ai,j,k‘ Tk(A)F7’> j = 1’ ey dout

i=1 k=0

where T}, is the Chebyshev polynomial of order k.

© Filters have guaranteed r-hops support

© O(1) parameters per layer

© No explicit computation of T, ® = O(n) computational
complexity (assuming sparsely-connected graph)

® lIsotropic kernels
© Domain dependent (different Laplacian for each graph)

Defferrard, Bresson and Vandergheynst, NIPS 2016

Graph Convolutional Network (GCN): Simplified ChebNet -
Going deeper

o First order polynomial
@ More layers are preferred over larger respective fields

@ Stack multiple layers. First actually “deep” architecture on graphs
F' ¢ (D /2WD 1?FG)

Hidden layer Hidden layer

.
. ,'
—e —e

e . o Output (figure by Thomas Kipf)

Kipf and Welling, ICLR 2017

Example: citation networks

GCN: First state-of-the art GraphNN for graph classification tasks

Method Cora’ PubMed’
Manifold Regularization’ 59.5% 70.7%
Semidefinite Embedding® 59.0% 71.1%
Label Propagation’ 68.0% 63.0%
DeepWalk® 67.2% 65.3%
Planetoid” 75.7% 77.2%

Graph Convolutional Net® 81.59% 78.72%

Classification accuracy of different methods on citation network datasets

Monti et al. 2016; data: 12Sen et al. 2008; methods: 3Belkin et al. 2006; *Weston
et al. 2012; 5Zhu et al. 2003; 6Perozzi et al. 2014; "Yang et al. 2016; 3Kipf, Welling
2016

Different Perspectives: Graph Convolutions vs Message
Passing

@ Graph Convolutions

Spectral Patch Operator based (aka Spatial)

@ Message Passing O\\

How to transfer filters across the same non-euclidean
domain?

=

Euclidean Non-Euclidean

How to transfer filters across the same non-euclidean
domain?

=

Euclidean Non-Euclidean

Revisiting CNNs in the spatial domain: Patch operators

@ Recall the definition of convolution on a 2D grid:

(fro)@) = > g@)f(l@—2

x’ €supp(g)

Revisiting CNNs in the spatial domain: Patch operators

@ Patch Operator: This amount to mapping each filter parameter
g(x’) to one value of the function f(y): (D(x)f)(z’) = f(y)

(fxo)@) = > g@)(Da)f)(a)

a’ €supp(g)

Patch operator on Non-euclidean domains

wi(z,-) on a grid wi(x,-) on a graph

Instead of having a “1-1" mapping between patches and filter
parameters, define K “generalized patches” as follows:

o Define a weighting function for each patch wg(z,y), assigning
weights to a pair of vertices z, y.

Masci*, Boscaini*, et al., ICCVW-3DRR 2015

Patch operator on Non-euclidean domains

wa(z,-) on a grid wa(x,-) on a graph

Instead of having a “1-1" mapping between patches and filter
parameters, define K “generalized patches” as follows:

o Define a weighting function for each patch wg(z,y), assigning
weights to a pair of vertices z, y.

o D (x) (f) = ZyEN(m) Wi (x, y)f(y)

Masci*, Boscaini*, et al., ICCVW-3DRR 2015

Patch Operator based convolution

Patch Operator based convolution of f € L?(X) with discrete filter
9= (g17"'7gK)

K
(fx9)@) = > gDr(x)f
k=1
Matrix-vector notation
fxg=g' (D)
where g = (g1,...,9x)" is the filter and Df is an n x K matrix

containing patches evaluated at each point as rows.

Geodesic CNN

(D@)f)(p.0) = /X wp (e, 2" Ywp(z, o) f(a') de’

/

Vv
wpe(z,x')

Radial weight Angular weight

wp(z,2) o e (@x (z.a")—p)? /0 wo(z,7') o e~ 8% To@.a")/o3

Kokkinos et al., CVPR 2012

Geodesic CNN (GCNN)

Convolutional layer expressed in the spatial domain using geodesic polar
patch operator + angular max pooling to solve rotational ambiguity

=max g(z 0) G(p, 0 + AG))

G(p,0) € Rdin*dout the learnable parameters for each patch

Geodesic CNN (GCNN)

Convolutional layer expressed in the spatial domain using geodesic polar
patch operator 4+ angular max pooling to solve rotational ambiguity

P =g ¢(L (P@F)(p.0) Glo.+29))
0,0

© Spatially-localized filters
© O(1) parameters per layer

© All operations are local = O(n) computational complexity

Masci*, Boscaini*, et al., ICCVW-3DRR 2015

Geodesic CNN (GCNN)

Convolutional layer expressed in the spatial domain using geodesic polar
patch operator 4+ angular max pooling to solve rotational ambiguity

P =g ¢(L (P@F)(p.0) Glo.+29))
0.0

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent (patches defined locally on the continuous
domain)

Masci*, Boscaini*, et al., ICCVW-3DRR 2015

Geodesic CNN (GCNN)

Convolutional layer expressed in the spatial domain using geodesic polar
patch operator 4+ angular max pooling to solve rotational ambiguity

P =g ¢(L (P@F)(p.0) Glo.+29))
0,0

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent (patches defined locally on the continuous
domain)

® Expensive pre-computation of patches

® Handcrafted patch operators - applicable only on shapes

® Rotation ambiguity (faced by angular max-pooling here)

Masci*, Boscaini*, et al., ICCVW-3DRR 2015

Mixture Model Networks: Learnable patch operator

@ Define Local system of coordinates
u(z,y) around z (e.g. geodesic
polar)

@ Learnable weights:
wi(w),. .., wk(u) functions of u,
e.g. Gaussians

Wy = exp (—(u - Hk)TEIZI(u - “k))

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks: Learnable patch operator

@ Define Local system of coordinates
u(z,y) around z (e.g. geodesic
polar)

@ Learnable weights:
wi(w),. .., wk(u) functions of u,
e.g. Gaussians

wy, = exp (—(u— pr) ' B (- ©r))

@ Now the convolution with filter g
becomes:
K

(fxg)(@) =D g > wilu(z,y)f(y)

k=1 yeN(z)

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks: Learnable patch operator

@ Define Local system of coordinates
u(z,y) around = (e.g. geodesic
polar)

@ Learnable weights:
wi(w),. .., wk(u) functions of u,
e.g. Gaussians

wy, = exp (—(u— pr) ' B (- ©r))

@ Now the convolution with filter g
becomes:
K

(fx)(@) =D g > wilulz,y))f(y)

k=1 yeN(z)

patch operator

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks: Learnable patch operator

@ Define Local system of coordinates
u(z,y) around = (e.g. geodesic
polar)

@ Learnable weights:
wi(w),. .., wk(u) functions of u,
e.g. Gaussians

wy, = exp (—(u— pr) ' B (- ©r))

@ Now the convolution with filter g
becomes:

(fxg)@) = > Y grw sz (u(z,y)) f(y)

yeN (z) k=1

Gaussian mixture

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks (MoNet)

Convolutional layer expressed in the spatial domain

K
Fla)y=¢| Y D wi(u(@y)Fy)Gx | , Gy € Rbnxdowe
yeN (z) k=1

© Spatially-localized filters
© O(1) parameters per layer

© All operations are local = O(n) computational complexity

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks (MoNet)

Convolutional layer expressed in the spatial domain

K
Fla)y=¢ Y Y wn(u@y)F@)Gi | , Gy Rlnxdoue
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent (patches defined locally on the continuous
domain)

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks (MoNet)

Convolutional layer expressed in the spatial domain

K
Fla)y=¢ Y Y wn(u@y)F@)Gi | , Gy Rlnxdoue
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent (patches defined locally on the continuous
domain)
© Learnable patch operators - applicable on general graphs

Monti*, Boscaini*, et al., CVPR 2017

Mixture Model Networks (MoNet)

Convolutional layer expressed in the spatial domain

K
Fla)y=¢| Y D wi(u(@y)Fy)Gx | , Gy € Rbnxdowe
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity

© Anisotropic Kernels

© Domain independent (patches defined locally on the continuous
domain)

© Learnable patch operators - applicable on general graphs

® Hancrafted pseudo-coordinates and expensive pre-computation

© Orientation ambiguity for meshes (if the pseudo-coordinates are
defined on the input space)

Monti*, Boscaini*, et al., CVPR 2017

MoNet as generalization of previous methods

Method Coordinates u(z,y)

Weight function we(u)

CNN* u(z’) —u(z)

GCN? deg(x), deg(z')
GONN® p(x,2'), 0(z, o)
ACNN* p(z,2'),0(x, z")
MoNet® p(x,2’),0(z,x)

d(u—v)
fixed parameters ® = v

1 1
(1=1= 1) (11 - 1)
o2 -1
exp (—%(u — V)T< ° Ug) (u-— v))
fixed parameters ® = (v, 0,,009)
exp (ftuTRq, (*1) R;u)
fixed parameters ® = (a, @, t)

exp (= z(u—p) T2 (u—p))
learnable parameters ® = (p, X)

Some CNN models can be considered as particular settings of MoNet
with weighting functions of different form

Methods: ‘LeCun et al. 1998: 2Kipf, Welling 2016; 3Masci et al. 2015; 4Boscaini et

al. 2016; Monti et al. 2016

Learn the Patch Operator in the feature space

@ Engineering the pseudo-coordinates requires domain knowledge.

Learn the Patch Operator in the feature space

@ Engineering the pseudo-coordinates requires domain knowledge.

@ Solution: Learn the weighting functions wy, directly from the feature
space:
wi(z,y) = wi(F(2), F(y))

Verma et al., CVPR 2018, Veli¢kovi¢ et al., ICLR 2018

Learn the Patch Operator in the feature space

@ Engineering the pseudo-coordinates requires domain knowledge.

@ Solution: Learn the weighting functions wy, directly from the feature
space:
wi(z,y) = wi(F(2), F(y))

o FeastNet: wy(x,y) = softmazyeqo...ic} (af [F(2)||F(y)] + cx)

Verma et al., CVPR 2018, Veli¢kovi¢ et al., ICLR 2018

Learn the Patch Operator in the feature space

@ Engineering the pseudo-coordinates requires domain knowledge.

@ Solution: Learn the weighting functions wy, directly from the feature
space:
wi(z,y) = wi(F(2), F(y))
o FeastNet: wy(z,y) = softmazye(o...xy(aL, [F(z)||F(y)] + cx)

@ Graph Attention:
wi(z,y) = softmaxyeN(m(LeakyReLU(ag[GkF(xﬂ|GkF(y)]))

concat/avg -
hy

(figure by Petar Veli¢kovié:
3-headed graph attention mechanism)

Verma et al., CVPR 2018, Veli¢kovi¢ et al., ICLR 2018

Feature-Steered Graph Convolutions (FeastNet)

FeastNet Convolutional layer

K
Fay=¢| Y Y wilF(x),Fy) F(y)Gy | . Gi € Rbinxdous
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent

Verma et al., CVPR 2018

Feature-Steered Graph Convolutions (FeastNet)

FeastNet Convolutional layer

K
Fay=¢| Y Y wilF(x),Fy) F(y)Gy | . Gi € Rbinxdous
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent
© Learnable weight functions - no engineering needed

Verma et al., CVPR 2018

Feature-Steered Graph Convolutions (FeastNet)

FeastNet Convolutional layer

K
F'(a:) =< Z Zwk(F(x),F(y)) F(U)Gk , Gy € RdinXdout
yeN (z) k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity

© Anisotropic Kernels

© Domain independent

© Learnable weight functions - no engineering needed

® No guarantee that the weighting functions will have a small
support = possibly all the vertices might contribute in the
calculation of a patch k = Harder to optimize.

® Geometry agnostic - potentially sensitive to remeshing

Verma et al., CVPR 2018

Graph Attention Networks (GAT)

GAT layer

K
Fl(z)=¢ we(F(2), F(y)) F@)Gy | , Gy € Rbnxdou

k=1 yeN(x)

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Domain independent

© Learnable weight functions - no engineering needed

© Easier to optimize due to the concatenation of the patches and the
softmax normalization of the weights across each neighborhood

® Geometry agnostic - potentially sensitive to remeshing

Veli¢kovié et al., ICLR 2018

@ Message Passing

Different Perspectives: Graph Convolutions vs Message
Passing

@ Graph Convolutions

Spectral Patch Operator based (aka Spatial)

@ Message Passing O\\

The Message Passing paradigm

o Node features are learned by exchanging information with
neighbouring nodes (originally introduced in the first Graph Neural
Network, Scarselli, Gori et al. 2009)

@ Draws inspiration from traditional diffusion processes in graphs (e.g.
random walks)

@ The message passing operation is repeated for a certain amount of
steps = similarly to Recurrent Neural Networks (RNNs)

e By unrolling the time-steps, this framework is equivalent to
the feed-forward networks described so far.

Graph Network

@ Most general framework so far.

o Let G a graph with vertex signals F'(z) and edge signals E(z,y) and
u a global signal associated

Battaglia et al., arxiv 2018

Graph Network algorithm
© The edge attributes are updated by the edge update function ¢*(-).
E(z,y) = ¢°(E(x,y), F(z), F(y), u)
In MoNet:

E(z,y) =Y wi(u(z,y)F(y)Gr

O~

Nt

Battaglia et al., arxiv 2018

Graph Network algorithm

@ The edge attributes of all the edges associated with a vertex are
aggregated by a permutation invariant aggregation function.

E(z) = p° 7V ({E(2,9)} yen(@)) (1)
In MoNet: E(z) = Y yeN(2) E(z,y)

/

© The node attributes are updated by the node update function ¢ (-).

F(z) = ¢"(E(z), F(2),u) ()
In MoNet: F(z) = £(E(x))

Battaglia et al., arxiv 2018

Graph Network algorithm

Q All the edge attributes and all the node attributes are aggregated by
a pair of permutation invariant aggregation functions.

E = p" 7 ({E(2,9)}(ay)ecs))
F = p"""“({F(2)}{zevy)

@ Finally the global attribute is updated.
i=¢"(E V,u) (3)

Battaglia et al., arxiv 2018

© Ordering-Based Graph Convolutions

Inductive bias of the domain: Fixed connectivity

@ How does existing work model the connectivity of the graph?

Inductive bias of the domain: Fixed connectivity

@ How does existing work model the connectivity of the graph?

@ Spectral methods: Through the graph Laplacian (or its
eigen-decomposition)

ks
fxg= Z ap A*f
k=0
© Different signal values on the same node always undergo the same
transformation.

© lsotropic Kernels

Inductive bias of the domain: Fixed connectivity

@ How does existing work model the connectivity of the graph?

@ Patch-based:

(frg)@)= > ngwk) f ()

yeN (z) k=1
© Anisotropic Kernels
© Connectivity prior not explicitly modelled: Different signals values on

the same node undergo different transformations (depending on the
signal values themselves)

Inductive bias of the domain: Fixed connectivity

o Can we have anisotropic kernels and explicit modelling of the
connectivity at the same time?

@ Reformulate the patch operator to depend only on the connectivity.

e "Hard” assignments between nodes and parameters (easier to
optimise).

Ordering-Based Graph Convolutions

@ Solution: locally order the vertices!

Ordering-Based Graph Convolutions

@ Solution: locally order the vertices!

@ For kernels equal to the maximum number of neighbours

K = mazx(|N(z)]):

IV ()]

(o)) =3 " ot an),

where N'(z) = {z1,..., %5 (s} the neighbourhood of z (inc. z)
ordered in some fixed way.

@ The above formulation is equivalent with traditional convolution,
after choosing a consistent ordering.

Bouritsas™, Bokhnyak* et al., ICCV 2019, ICLRW 2019

How to define the local ordering: Spiral Convolutions

@ How can we make sure that the ordering is also consistent across
different vertices of the graph?

@ Harder problem for general graphs. For meshes, the ambiguity falls
again into different rotations.

@ Spiral scan:

\
AN

B

\

L—_

\
Q

T

Lim et al., ECCVW 2018, Bouritsas*, Bokhnyak* et al., ICCV 2019, ICLRW 2019

Ordering-Based Graph Convolutions

[N ()]
P -c Y G| . Goemtoin
k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

Ordering-Based Graph Convolutions

V(@)
F'(z) =¢ Z F(x,)Gy | , Gy € Riinxdous
k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Lightweight, fast & easier to optimise

© Similar to traditional convolutions = practices for traditional
CNNs can be directly transferred (e.g. dilated convolutions)

© Connectivity and geometry aware

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

Ordering-Based Graph Convolutions

[N ()]
P -c Y G| . Goemtoin
k=1

© Spatially-localized filters

© O(1) parameters per layer

© All operations are local = O(n) computational complexity
© Anisotropic Kernels

© Lightweight, fast & easier to optimise

© Similar to traditional convolutions = practices for traditional
CNNs can be directly transferred (e.g. dilated convolutions)

© Connectivity and geometry aware

® Ordering needs to be engineered

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

@ Applications: Generative models for 3D shapes

Representation Learning for 3D meshes of fixed topology

@ Autoencoder architecture
@ Spiral Convolutions

@ Hierarchical structure

80.0.0-]1°-0.2.0.8-

Unpool Unpool

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

Vector space Arithmetics

08RR0Q
HOEHOEE

®-6-0-0
B4R

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

@ Interpolation

@ Analogies

3D shape Generation

o Wasserstein GAN architecture

Bouritsas®, Bokhnyak* et al., ICCV 2019, ICLRW 2019

Shape Completion (fixed toplogy)

Litany et al., CVPR 2018

Facial expression Generation

2002029
222028289
228228209

Ranjan et al., ECCV 2018

3D Hand and Human Body Reconstruction

Kulon et al., BMVC 2019, Kolotouros et. al, CVPR 2019

Arbitrary topology 3D shape generation: Relatively
unexplored

Generative Genendve
Graph Graph
T ' Model , Model

erts, Edges) ‘ ()

qum Mesh

Range scan to 3D mesh (only up to 100 vertices)
¢ W=~
‘ I TN s
TIPVow
| SRt

Zero genus shape generation

Dai and NieBner, CVPR 2019, Smith et al., ICML 2019

Can we draw insipration from methods on arbitrary

Graphs?
RS el gl o g

B el b Y
- Ny Wy A T
K= £ £

&K A A

P P

€O AL B

Adjacency tensor A. ‘Sampled A

Soe 4o e

Annotation matrix X

I
N%J@

Molecule generation

Sampled X Molecule

Y Yy X~

\ ‘tw
)

Community

*ﬁ.

Baselines GraphRNN

Topology Generation

Simonovsky and Komodakis, ICANN 2019, De Cao and Kipf, ICMLW 2018, You et al.,

ICML 2018

Summary: Deep Learning on 3D Data

Image-based

Simple
Good results
@ Not geometric

& No invariance

Volumetric

Simple
@ Coarse
@ Memory

& No invariance

e ofimplict
L surface
.

e SDF >0

A o
@ SDF <0

Signhed
Point Cloud distance- Mesh-based
based
Efficient Efficient Efficient
Simple Simple Accurate
Accurate Accurate Deform.
invariant

& No invariance & No invariance

@ Custom layers

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Deep Learning Frameworks
Datasets

Additional 3D Deep Learning tutorials

Deep Learning Frameworks

e Tensorflow (Google)

e PyTorch (Facebook), Torch

e (Caffe (Berkeley) and Caffe v2 (merged with PyTorch)
e CNTK (Microsoft)

e MatConvNet (Oxford)

e Keras (high level Python API)

e Theano (University of Montreal)

e Matlab

Deep Learning Frameworks

Introducing TensorFlow Graphics:
Computer Graphics Meets Deep
Learning

ﬁF TensorFlow in TensorFlow

May 9 - 5 min read

AL

© head

@ chest

@ abdomen

@ pelvis

O Left upper arm
© left lower arm
© left hand

(O right upper arm
O right lower arm
© right hand

© left upperleg
@ left lower leg
@ left foot

@ right upper leg
@ right lower leg
@ right foot

https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668

https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668

SGP 2019: Keynotes

Yaron Lipman
(Weizmann Institute of Science)

Deep Learning Irregular Data

Large part of the recent success of applying neural networks to image data is attributed to
the restriction of the networks to translation-invariant functions without compromising their
expressive power. In this talk we discuss how to adapt this basic paradigm of neural
networks to irregular data including graphs and hyper-graphs. We characterize the
symmetries of irregular data, construct linear layers that respect this symmetry, and discuss expressiveness of
the resulting networks. We will conclude by introducing a simple model for learning graph data that has better
expressive power than existing graph neural networks.

Hao (Richard) Zhang
(Simon Fraser University)

Can Machines Learn to Generate 3D Shapes?

Computer-aided geometric modeling is about synthesis and creation by computing
machinery. Early success has been obtained on training deep neural networks for speech
and image syntheses, while similar attempts on learning generative models for 3D shapes
are met with difficult challenges. In this talk, | will highlight the representation, data, and
output challenges we must tackle and how my research has shaped itself to address them. In particular, | argue
that the ultimate goal of 3D shape generation is not for the shapes to look right; they need to serve their
intended (e.g., functional) purpose with the right part connection, arrangements, and geometry. Hence, |
advocate the use of structural representations of 3D shapes and show our latest work on training machines to
learn one such representation and an ensuing generative model. At last, | will venture into creative modeling,
perhaps a new territory in machine intelligence and ask: can machines learn to generate creative contents?

Related courses

Geometric Deep Learning

filter bank 1
P filters

/‘ lllll
Ja
filter bank Q
-~ 5 !
I‘(H '\\-
< il
Intrinsic convo lutional Output lay
lay Q-dim

SGP Graduate School 2017, 2018

http://school.geometryprocessing.org/

http://school.geometryprocessing.org/

Related courses

Learning Generative Models of 3D Structures

Eurographics 2019 Tutorial

https://3dstructgen.github.io/

2

elated courses

CreativeAl:
Deep Learning for Graphics

Siggraph 2019, Eurographics 2018, 2019, Siggraph Asia 2018

http://geometry.cs.ucl.ac.uk/creativeai/

http://geometry.cs.ucl.ac.uk/dl4qg/

http://geometry.cs.ucl.ac.uk/creativeai/

Related courses

Geometric Deep Learning on
Graphs and Manifolds

NIPS 2017 Tutorial

http://www.geometricdeeplearning.com

http://www.geometricdeeplearning.com

Datasets for 3D Deep Learning

r Swivel chair

.T

MODEL FfT

* it/ el @

ShIO™ VMG = <
L -8

«.tnii=
DiL WA [@ W
'%"":%t--Jo wrlr 4y
d L 94) Nl

= ai?’" ” E
ModelNet (2015)

ShapeNet (2015)
ModelNet10: 4899 models, 10 categories i
ModelNet40: 12311 models, 40 categories

3Million+ models and 4K+ categories
ShapeNetCore: 51300 models, 55 categories

Backrest

E

Dm 50 45 x 5cm

lﬁ-m‘ = ¥

nnnnnnnnn

F.‘.'m
b

-~

Coarse

>

Fine-grained

PartNet (2019)

A Large-scale Benchmark for Fine-grained and
Hierarchical Part-level 3D Object Understanding

Datasets for 3D Deep Learning

- D e @ =],
b= 0O —

ABC (2018) TraceParts (2019)
A Big CAD Model Dataset 3D dataset of mechanical
For Geometric Deep Learning components

e 3D Machine Learning Github repository

e https://qgithub.com/timzhang642/3D-Machine-Learning

https://github.com/timzhang642/3D-Machine-Learning

Datasets for 3D Deep Learning

SCAPE (Stanford)

/1 human meshes
same person, different poses
12.5K vertices

TA

¥4

TOSCA (Technion)

80 objects, 9 categories
human and animal shapes
3K-50K vertices

FAUST (MPI)

300 human meshes
10 objects in 30 poses
~7K vertices

Datasets for 3D Deep Learning

u' : 2: 3: 4: 58
Large Scale 3D Morphable Models
Booth et al., IJCV 2017

COMA

Generating 3D faces using Convolutional Mesh Autoencoders

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal and Michael J Black
EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV) 2018, MUNICH, GERMANY

Datasets for scene understanding

ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes

hmark ChaIIe

ScanComplete: Large-Scale Scene Completion and
Semantic Segmentation for 3D Scans

Angela Dai'?® Daniel Ritchie?> Martin Bokeloh® Scott Reed* Jiirgen Sturm® Matthias NieBner®
IStanford University 2Brown University 3Google 4DeepMind ®Technical University of Munich

Dai et al. [CVPR 2017], Dai et al. [CVPR 2018]

