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Deep Learning: Introduction

1958 1959 1982 1987 1995 1997 1998 1999 2006 2012 2014 2015 

Perceptron 
Rosenblatt 

Visual cortex 
Hubel&Wiesel 

Backprop 
Werbos 

Neurocognitron 
Fukushima 

First NIPS 

SVM 
Vapnik 

RNN / LSTM 
Schmidhuber 

CNN 
LeCun 

First GPU 

Autoencoder 
LeCun, Hinton 

ImageNet  
breakthrough 

Krizhevsky 

AI Research 

2010 

R E N A I S S A N C E  D A R K  A G E S  A I  B I R T H  

2016 

Autonomous  
cars 

AlphaGo 

Speech  
recognition 

2017 2018 

Slide: M. Bronstein



Breakthrough in image recognition

 

Deep learning

1,000 object classes

1,431,167 images 

Slide: CS231n@Stanford



Handcrafted vs Learned features

Feature 
detector

Classifier CAR

Classical computer vision: hand-crafted features (e.g. SIFT) + 
simple classifier (e.g. SVM) 

Slide: M. Bronstein



Handcrafted vs Learned features

Feature 
detector

Classifier CAR

Neural
Network

CAR

Classical computer vision: hand-crafted features (e.g. SIFT) + 
simple classifier (e.g. SVM) 

Modern computer vision: data-driven end-to-end systems
Slide: M. Bronstein



Convolutional Neural Networks (CNN) 

3 convolutional + 1 fully 
connected layers

1M parameters

Trained on MNISK 70K

CPU-based

�  non-linearitytanh

Lecture 1 -Fei-Fei Li & Justin Johnson & Serena Yeung
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

5 convolutional + 3 fully 
connected layers

60M parameters

Trained on ImageNet 
1.5M

GPU-based

ReLU, Dropout

Credit: CS231n@Stanford, M. Bronstein



Basics of deep learning



Supevised learning: classification example
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Supervised learning: classification example

Data vectors x 2 Rd

(e.g. for 512⇥512 images d ⇡ 105)

Unknown classification functional
f : Rd

! {1, . . . , L} in L classes

Training set

S = {(xi 2 Rd
, yi = f(xi))}

T
i=1

Parametric model f⇥ of f
Rd

Supervised learning: find optimal model parameters by minimizing the
loss ` on the training set

⇥⇤ = argmin
⇥

TX

i=1

`(f⇥(xi), yi)

Slide: M. Bronstein
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Simplest neural network: perceptron
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Simplest neural network: Perceptron

...

Σ

x1

x2

xd

y

w1

w2

wd

1

b

Linear layer y = ⇠

 
dX

`=1

w`x` + b

!

= ⇠
�
w>x

�

Activation, e.g. ⇠(x) = tanh(x)

Parameters layer weights w = (b, w1, . . . , wd), including bias

Rosenblatt 1957
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Simplest neural network: Perceptron
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Multi-layer fully connected neural network

16/120

Multi-layer neural network
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y
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w
(1)
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w
(1)
12

w
(1)
22

w
(1)

d(1)d

Linear layer x(l+1) = ⇠
�
W(l+1)x(l)

�

Activation, e.g. ⇠(x) = tanh(x)

Parameters layer weights W(l+1)
2 Rd(l+1)⇥d(l)

Slide: M. Bronstein

Hidden layers



Setting the number of layers and their sizes

Lecture 4 - 13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 201626

Setting the number of layers and their sizes

more neurons = more capacity

Image: CS231n@Stanford
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Setting the number of layers and their sizes
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Setting the number of layers and their sizes

more neurons = more capacity

Image: CS231n@Stanford

Transformed                    Original 



Neural network training: Backpropagation
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Multi-layer neural network
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Linear layer x(l+1) = ⇠
�
W(l+1)x(l)

�

Activation, e.g. ⇠(x) = tanh(x)

Parameters layer weights W(l+1)
2 Rd(l+1)⇥d(l)

y = 1
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⇥⇤ = argmin
⇥

E, where E =
TX

i=1

`( f⇥(xi), yi)
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Neural network training: Backpropagation
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Multi-layer neural network
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Image credit: M. Bronstein



Fully connected neural networks

Credit: Yann LeCun



Stationarity and self-similarity

Data is self-similar across the domain

Slide: M. Bronstein



Convolutional neural networks

Credit: Yann LeCun
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Convolutional filters (Translation invariance+Self-similarity)

Multiple layers (Compositionality)

Filters localized in space (Locality)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

O(log n) layers in classification tasks

LeCun et al. 1989

Key properties of CNN

Slide: M. Bronstein



Lecture 1 -Fei-Fei Li & Justin Johnson & Serena Yeung

GoogLeNet VGG MSRASuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014Year 2010

NEC-UIUC

[Lin CVPR 2011]

[Szegedy arxiv 2014] [Simonyan arxiv 2014]

30

Year 2015

Dense descriptor grid: 
HOG, LBP

Coding: local coordinate, 
super-vector

Pooling, SPM

Linear SVM

Lion image by Swissfrog is 
licensed under CC BY 3.0

Image

conv-64
conv-64
maxpool
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maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

fc-4096
fc-4096
fc-1000

softmax

conv-512
conv-512
maxpool

Pooling
Convolution
Softmax
Other

[He ICCV 2015]Figure copyright Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton, 2012. 
Reproduced with permission. 
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Image-based deep network evolution



Deep learning for 2D vs. 3D data

Deep Neural 
network

“Stanford bunny”

Deep Neural 
network

“Stanford bunny”

?



3D Representations

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based Volumetric Point Cloud Mesh-based
Signed 

distance- 
based



Deep learning: short introduction


3D representations


Deep learning for image and voxel-based representations


Deep learning on point clouds


Deep learning implicit representations


Deep learning on graphs and meshes


Frameworks, datasets, relates courses

Course Outline



3D Representations

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based Volumetric Point Cloud Mesh-based
Signed 

distance- 
based



Image-based representations: Rendered Views

Multi-view CNN 
Hang Su et al., ICCV 2015



Image-based representations: Rendered Views

3D shape segmentation 
E. Kalogerakis et al., CVPR 2017

Local shape descriptor learning 
Haibin Huang et al., TOG 2018

3D shape synthesis via silhouettes 
A. Soltani et al., CVPR 2017



Image-based representations: Rendered Views

3D shape segmentation 
E. Kalogerakis et al., CVPR 2017

Local shape descriptor learning 
Haibin Huang et al., TOG 2018

3D shape synthesis via silhouettes 
A. Soltani et al., CVPR 2017

✅ Simple, re-use standard 
components of CNNs

✅ Efficient, good results

⛔ Memory

⛔ Not geometric

⛔ No invariance



Image-based representations: Mapping to flat domain

Deep learning 3D shapes 
using geometry images 

A. Sinha et al., ECCV 2016

Image: H.Hoppe



Image-based representations: Mapping to flat domain

Deep learning 3D shapes 
using geometry images 

A. Sinha et al., ECCV 2016

Gromov–Wasserstein CNN 
D. Ezuz et al., SGP 2017

Multi-chart Generative         
Surface Modeling 

H. Ben-Hamu et al., SIGGRAPH Asia 2018

Seamless Toric Covers 
H. Maron et al., SIGGRAPH 2017

Image: H.Hoppe



Image-based representations: Mapping to flat domain

Deep learning 3D shapes using 
geometry images 

A. Sinha et al., ECCV 2016
Multi-chart Generative Surface Modeling 
H. Ben-Hamu et al., SIGGRAPH Asia 2018

Gromov–Wasserstein CNN 
D. Ezuz et al., SGP 2017

Seamless Toric Covers 
H. Maron et al., SIGGRAPH 2017

✅ Efficient

✅ Deformation invariant*

⛔ Mapping distortion

⛔ Genus-zero surfaces

Surface Networks via General Covers 
N. Hain et al., arXiv 2019

Image: H.Hoppe

*If the mapping is deformation invariant



3D Representations

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park
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Volumetric Representations

3D ShapeNets 
Z. Wu et al., CVPR 2015

object label 10

13

5

2

30

3D voxel input

5

4

4000

48 filters of
stride 2

160 filters of
stride 2

512 filters of
stride 1

6

1200

VoxNet 
Maturana and Scherer, IROS 2015 



Volumetric Representations

3D-GAN 
J. Wu et al., NIPS 2016

GRASS: Generative Recursive Autoencoders  
Jun Li et al., SIGGRAPH 2017

Decomposer-Composer Network 
Dubrovina et al., ICCV 2019

3D Recurrent Reconstruction 
C. Choy et al., ECCV 2016
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Sea
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Volumetric Representations

3D-GAN 
J. Wu et al., NIPS 2016

GRASS: Generative Recursive Autoencoders  
Jun Li et al., SIGGRAPH 2017

Back
Sea

t

Legs

Decomposer-Composer Network 
Dubrovina et al., ICCV 2019

3D Recurrent Reconstruction 
C. Choy et al., ECCV 2016

✅ Simple

⛔ Coarse

⛔ Memory

⛔ No invariance



Volumetric Representations: Octree based-networks

M. Tatarchenko et al. [ICCV 2017], G. Riegler [CVPR 2017], P.-S. Wang et al. [SIGGRAPH 2017]

OctNet

O-CNN

Octree 
Generating 
Networks



Volumetric Representations: Sparse convolutions

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Network  
Choy et al., CVPR 2019



Deep learning: short introduction


3D representations


Deep learning for image and voxel-based representations


Deep learning on point clouds


Deep learning implicit representations


Deep learning on graphs and meshes


Frameworks, datasets, relates courses

Course Outline



3D Representations

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based Volumetric Point Cloud Mesh-based
Signed 

distance- 
based



PointNet

• End-to-end learning for irregular point data 

• Unified framework for various tasks

PointNet, Qi et al., CVPR 2017



PointNet

• Permutation invariance (equivariance) 
Point cloud is a set of unordered points


• (Partial) rigid transformation invariance 
Point cloud rotations should not alter classification results

N

3 + NF

N

3 + NF

represents the same set as 

Slide: Charles R. Qi



PointNet

is symmetric (w.r.t. order of input points)g (h(x1), h(x2), ..., h(xn))
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(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

 …

g
MLP

MLP

MLP

MLP

 …

MLP

γ

PointNet (vanilla)max

h

• Permutation Invariance

Slide: Charles R. Qi



• Transformation Invariance

T-Net

Transform

transform 
params

n 
 x

 3

n 
 x

 3 rest of the 
network…

input 
point cloud

transformed 
point cloud

PointNet

Slide: Charles R. Qi



PointNet

Space Cost (#params)

100M

10M

1M
MVCNN 

[Su et al. 2015]
Subvolume

[Qi et al. 2016]

PointNet 
[Qi et al. 2017]

multi-view

volumetric

point cloud
Saves 80% memory

• Memory requirement decrease

• Comparable decrease in computation time

Slide: Charles R. Qi



PointNet limitations

Global feature learning
either one point or all points

v.s.

PointNet (vanilla) [Qi et al.2017]

max 
pooling

Slide: Charles R. Qi

3D CNN [Wu et al.2015]

Hierarchical feature learning
multiple levels of abstraction



v.s.

3D CNN [Wu et al.2015]

Hierarchical feature learning
multiple levels of abstraction

PointNet (vanilla) [Qi et al.2017]

Global feature learning
either one point or all points

max 
poolingNo local context

Limited translation 
invariance

PointNet limitations

Slide: Charles R. Qi



PointNet++

Basic idea: Apply pointnet at local regions.

✓ Hierarchical feature learning
✓ Translation invariant
✓ Permutation invariant

N points in (X,Y)

X

Y

u

v

pointnet

k points in local 
coordinates (u,v)

PointNet++, Qi et al., NeurIPS, 2018



sampling & 
grouping

pointnet

set abstraction

38

interpolate

skip link concatenation

pointnet

sampling & 
grouping

pointnet

interpolateunit 
pointnet

unit 
pointnet

fully connected layers
set abstraction

Segmentation

Classification

Hierarchical point set feature learning
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PointNet++: Complete architecture

Slide: Charles R. Qi
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• Capture local geometric features of point clouds with 
EdgeConvolution (EdgeConv)

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

N points in (X,Y)

X

Y

u

v

k points in local 
coordinates (u,v)

pointnet



• Capture local geometric features of point clouds with 
EdgeConvolution (EdgeConv)

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

N points in (X,Y)

X

Y

u

v

EdgeConv 
Net

k points in local 
coordinates (u,v)



• Capture local geometric features of point clouds / features 
with EdgeConvolution (EdgeConv)


• Edge convolution operator is defined as

Dynamic Graph CNN for Learning on Point Clouds (DGCNN)

h✓(xi, x j) = h✓(xi, x j � xi)
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Dynamic Graph CNN for Learning on Point Clouds (DGCNN)



• A different approach for point cloud processing                       

Point Convolutional Neural Networks by Extension Operators

Credit: Matan Atzmon et al.



• A different approach for point cloud processing                       
- extend the samples to a continuous function                           
- utilize it to perform continuous convolution

Point Convolutional Neural Networks by Extension Operators

Credit: Matan Atzmon et al.



Point Convolutional Neural Networks by Extension Operators

Matan Atzmon⇤ Haggai Maron⇤ Yaron Lipman
Weizmann Institute of Science

Extension Convolution Restriction

Figure 1: A new framework for applying convolution to functions defined over point clouds: First, a function over the point
cloud (in this case the constant one) is extended to a continuous volumetric function over the ambient space; second, a
continuous volumetric convolution is applied to this function (without any discretization or approximation); and lastly, the
result is restricted back to the point cloud.

Abstract

This paper presents Point Convolutional Neural Net-

works (PCNN): a novel framework for applying convolu-

tional neural networks to point clouds. The framework

consists of two operators: extension and restriction, map-

ping point cloud functions to volumetric functions and vise-

versa. A point cloud convolution is defined by pull-back

of the Euclidean volumetric convolution via an extension-

restriction mechanism.

The point cloud convolution is computationally efficient,

invariant to the order of points in the point cloud, robust to

different samplings and varying densities, and translation

invariant, that is the same convolution kernel is used at all

points. PCNN generalizes image CNNs and allows readily

adapting their architectures to the point cloud setting.

Evaluation of PCNN on three central point cloud learn-

ing benchmarks convincingly outperform competing point

cloud learning methods, and the vast majority of methods

working with more informative shape representations such

as surfaces and/or normals.

1 Introduction

The huge success of deep learning in image analysis mo-
tivates researchers to generalize deep learning techniques to
work on 3D shapes. Differently from images, 3D data has
several popular representation, most notably surface meshes
and points clouds. Surface-based methods exploit connec-
tivity information for 3D deep learning based on render-
ing [39], local and global parameterization [24, 38, 23], or

⇤equal contribution

spectral properties [45]. Point cloud methods rely mostly
on points’ locations in three-dimensional space and need to
implicitly infer how the points are connected to form the
underlying shape.

The goal of this paper is to introduce Point Cloud Convo-
lutional Neural Networks (PCNN) generalizing deep learn-
ing techniques, and in particular Convolutional Neural Net-
works (CNN) [22], to point clouds. As a point cloud
X ⇢ R3 is merely an approximation to some underlying
shape S, the main challenges in building point cloud net-
works are to achieve: (i) Invariance to the order of points
supplied in X; (ii) Robustness to sampling density and dis-
tribution of X in S; and (iii) Translation invariance of the
convolution operator (i.e., same convolution kernel is used
at all points) .

Invariance to point order in X was previously tackled in
[31, 34, 33, 46] by designing networks that are composition
of euuquivariant layers (i.e., commute with permutations)
and a final symmetric layer (i.e., invariant to permutations).
As shown in [34], any linear equivariant layer is a combi-
nation of scaled identity and constant linear operator and
therefore missing many of the degrees of freedom existing
in standard linear layers such as fully connected and even
convolutional.

Volumetric grid methods [43, 25, 32, 35] use 3D occu-
pancy grid to deal with the point order in X and provide
translation invariance of the convolution operator. How-
ever, they quantize the point cloud to a 3D grid, usually
producing a crude approximation to the underlying shape
(i.e., piecewise constant on voxels) and are confined to a
fixed 3D grid structure.

Our approach toward these challenges is to define CNN
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Point Convolutional Neural Networks by Extension Operators

Credit: Matan Atzmon et al.
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Extension Convolution Restriction

Figure 1: A new framework for applying convolution to functions defined over point clouds: First, a function over the point
cloud (in this case the constant one) is extended to a continuous volumetric function over the ambient space; second, a
continuous volumetric convolution is applied to this function (without any discretization or approximation); and lastly, the
result is restricted back to the point cloud.
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This paper presents Point Convolutional Neural Net-

works (PCNN): a novel framework for applying convolu-

tional neural networks to point clouds. The framework

consists of two operators: extension and restriction, map-

ping point cloud functions to volumetric functions and vise-

versa. A point cloud convolution is defined by pull-back

of the Euclidean volumetric convolution via an extension-

restriction mechanism.

The point cloud convolution is computationally efficient,

invariant to the order of points in the point cloud, robust to

different samplings and varying densities, and translation

invariant, that is the same convolution kernel is used at all

points. PCNN generalizes image CNNs and allows readily

adapting their architectures to the point cloud setting.

Evaluation of PCNN on three central point cloud learn-

ing benchmarks convincingly outperform competing point

cloud learning methods, and the vast majority of methods

working with more informative shape representations such

as surfaces and/or normals.

1 Introduction

The huge success of deep learning in image analysis mo-
tivates researchers to generalize deep learning techniques to
work on 3D shapes. Differently from images, 3D data has
several popular representation, most notably surface meshes
and points clouds. Surface-based methods exploit connec-
tivity information for 3D deep learning based on render-
ing [39], local and global parameterization [24, 38, 23], or

⇤equal contribution

spectral properties [45]. Point cloud methods rely mostly
on points’ locations in three-dimensional space and need to
implicitly infer how the points are connected to form the
underlying shape.

The goal of this paper is to introduce Point Cloud Convo-
lutional Neural Networks (PCNN) generalizing deep learn-
ing techniques, and in particular Convolutional Neural Net-
works (CNN) [22], to point clouds. As a point cloud
X ⇢ R3 is merely an approximation to some underlying
shape S, the main challenges in building point cloud net-
works are to achieve: (i) Invariance to the order of points
supplied in X; (ii) Robustness to sampling density and dis-
tribution of X in S; and (iii) Translation invariance of the
convolution operator (i.e., same convolution kernel is used
at all points) .

Invariance to point order in X was previously tackled in
[31, 34, 33, 46] by designing networks that are composition
of euuquivariant layers (i.e., commute with permutations)
and a final symmetric layer (i.e., invariant to permutations).
As shown in [34], any linear equivariant layer is a combi-
nation of scaled identity and constant linear operator and
therefore missing many of the degrees of freedom existing
in standard linear layers such as fully connected and even
convolutional.

Volumetric grid methods [43, 25, 32, 35] use 3D occu-
pancy grid to deal with the point order in X and provide
translation invariance of the convolution operator. How-
ever, they quantize the point cloud to a 3D grid, usually
producing a crude approximation to the underlying shape
(i.e., piecewise constant on voxels) and are confined to a
fixed 3D grid structure.

Our approach toward these challenges is to define CNN
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Point Convolutional Neural Networks by Extension Operators

• Extension operator 

[9, 14, 18]. The main limitation of these methods in the
context of geometric deep learning is that different graphs
have different spectral bases and finding correspondences
between the bases or common bases is challenging. This
problem was recently targeted by [45] using the functional
map framework.

Deep learning on surfaces. Other approaches to geomet-
ric deep learning work with triangular meshes that posses
also connectivity and normal information, in addition to the
point locations. One class of methods use rendering and
2D projections to reduce the problem to the image setting
[39, 19]. Another line of works uses local surface represen-
tations [24, 5, 26] or global parameterizations of surfaces
[38, 23] for reducing functions on surfaces to the planar do-
main or for defining convolution operators directly over the
surfaces.

RBF networks. RBF networks are a type of neural net-
works that use RBF functions as an activation layer, see
[29, 28]. This model was first introduced in [8], and was
used, among other things, for function approximation and
time series prediction. Usually, these networks have three
layers and their output is a linear combination of radial basis
functions. Under mild conditions this model can be shown
to be a universal approximator of functions defined on com-
pact subsets of Rd [30]. Our use of RBFs is quite different:
RBFs are used in our extension operator solely for the pur-
pose of defining point cloud operators, whereas the ReLU
is used as an activation.

3 Method

Notations. We will use tensor (i.e., multidimensional ar-
rays) notation, e.g., a 2 RI⇥I⇥J⇥L⇥M . Indexing a par-
ticular entry is done using corresponding lower-case letters,
aii0jlm, where 1  i, i0  I , 1  j  J , etc. When
summing tensors c =

P
ijl aii0jlmbijl, where b 2 RI⇥J⇥L

the dimensions of the result tensor c are defined by the free
indices, in this case c = ci0m 2 RI⇥M .

Goal. Our goal is to define convolutional neural networks
on point clouds X = {xi}

I
i=1 2 RI⇥3. Our approach

to defining point cloud convolution is to extend functions
on point clouds to volumetric functions, perform standard
Euclidean convolution on these functions and sample them
back on the point cloud.

We define an extension operator

EX : RI⇥J
! C(R3,RJ), (2)

where RI⇥J represents the collection of functions f : X !

RJ , and C(R3,RJ) volumetric functions  : R3
! RJ .

Together with the extension operator we define the restric-
tion operator

Rx : C(R3,RM ) ! RI⇥M . (3)

Given a convolution operator O : C(R3,RJ) !

C(R3,RM ) we adapt O to the point cloud X via (1). We
will show that a proper selection of such point cloud convo-
lution operators possess the following desirable properties:

1. Efficiency: OX is computationally efficient.

2. Invariance: OX is indifferent to the order of points in
X , that is, OX is equivariant.

3. Robustness: Assuming X ⇢ S is a sampling of an
underlying surface S, and f 2 C(S,R), then EX �

RX [f ] 2 C(R3,R) approximates f when sampled
over S and decays to zero away from S. In particu-
lar EX [1] approximates the volumetric indicator func-
tion of S, where 1 2 RI⇥1 is the vector of all ones;
rEX [1] approximates the mean curvature normal field
over S. The approximation property in particular im-
plies that if X,X⇤

⇢ S are different samples of S then
OX ⇡ OX⇤.

4. Translation invariance: OX is translation invariant,
defined by a stationary (i.e., location independent) ker-
nel.

In the next paragraphs we define these operators and
show how they are used in defining the main building blocks
of PCNN, namely: convolution, pooling and upsampling.
We discuss the above theoretical properties in Section 4.

Extension operator

The extension operator EX : RI⇥J
! C(R3,RJ) is

defined as an operator of the form,

EX [f ](x) =
X

i

fij`i(x), (4)

where f 2 RI⇥J , and `i 2 C(R3,R) can be thought
of as basis functions defined per evaluation point x. One
important family of bases are the Radial Basis Func-
tions (RBF), that were proven to be useful for surface
representation[4, 11]. For example, one can consider in-
terpolating bases (i.e., satisfying `i(xi0) = �ii0 ) made out
of an RBF � : R+ ! R. Unfortunately, computing (4) in
this case amounts to solving a dense linear system of size
I ⇥ I . Furthermore, it suffers from bad condition number
as the number of points is increased [42]. In this paper we
will advocate a novel approximation scheme of the form

`i(x) = c!i�(|x� xi|), (5)

3
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of an RBF � : R+ ! R. Unfortunately, computing (4) in
this case amounts to solving a dense linear system of size
I ⇥ I . Furthermore, it suffers from bad condition number
as the number of points is increased [42]. In this paper we
will advocate a novel approximation scheme of the form

`i(x) = c!i�(|x� xi|), (5)
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Extension Convolution Restriction

Figure 1: A new framework for applying convolution to functions defined over point clouds: First, a function over the point
cloud (in this case the constant one) is extended to a continuous volumetric function over the ambient space; second, a
continuous volumetric convolution is applied to this function (without any discretization or approximation); and lastly, the
result is restricted back to the point cloud.

Abstract

This paper presents Point Convolutional Neural Net-

works (PCNN): a novel framework for applying convolu-

tional neural networks to point clouds. The framework

consists of two operators: extension and restriction, map-

ping point cloud functions to volumetric functions and vise-

versa. A point cloud convolution is defined by pull-back

of the Euclidean volumetric convolution via an extension-

restriction mechanism.

The point cloud convolution is computationally efficient,

invariant to the order of points in the point cloud, robust to

different samplings and varying densities, and translation

invariant, that is the same convolution kernel is used at all

points. PCNN generalizes image CNNs and allows readily

adapting their architectures to the point cloud setting.

Evaluation of PCNN on three central point cloud learn-

ing benchmarks convincingly outperform competing point

cloud learning methods, and the vast majority of methods

working with more informative shape representations such

as surfaces and/or normals.

1 Introduction

The huge success of deep learning in image analysis mo-
tivates researchers to generalize deep learning techniques to
work on 3D shapes. Differently from images, 3D data has
several popular representation, most notably surface meshes
and points clouds. Surface-based methods exploit connec-
tivity information for 3D deep learning based on render-
ing [39], local and global parameterization [24, 38, 23], or

⇤equal contribution

spectral properties [45]. Point cloud methods rely mostly
on points’ locations in three-dimensional space and need to
implicitly infer how the points are connected to form the
underlying shape.

The goal of this paper is to introduce Point Cloud Convo-
lutional Neural Networks (PCNN) generalizing deep learn-
ing techniques, and in particular Convolutional Neural Net-
works (CNN) [22], to point clouds. As a point cloud
X ⇢ R3 is merely an approximation to some underlying
shape S, the main challenges in building point cloud net-
works are to achieve: (i) Invariance to the order of points
supplied in X; (ii) Robustness to sampling density and dis-
tribution of X in S; and (iii) Translation invariance of the
convolution operator (i.e., same convolution kernel is used
at all points) .

Invariance to point order in X was previously tackled in
[31, 34, 33, 46] by designing networks that are composition
of euuquivariant layers (i.e., commute with permutations)
and a final symmetric layer (i.e., invariant to permutations).
As shown in [34], any linear equivariant layer is a combi-
nation of scaled identity and constant linear operator and
therefore missing many of the degrees of freedom existing
in standard linear layers such as fully connected and even
convolutional.

Volumetric grid methods [43, 25, 32, 35] use 3D occu-
pancy grid to deal with the point order in X and provide
translation invariance of the convolution operator. How-
ever, they quantize the point cloud to a 3D grid, usually
producing a crude approximation to the underlying shape
(i.e., piecewise constant on voxels) and are confined to a
fixed 3D grid structure.

Our approach toward these challenges is to define CNN
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• Simplicity (Sparse+Linear)
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Figure 2. Illustration of our proposed network. It consists of two subnetworks called the point network and the voxel network. The point

network extracts local features corresponding to the local shape of an object, whereas the voxel network first transforms a point cloud into
voxels, and extracts spatial features with a 3D U-Net. These two different feature vectors are combined into one vector, and transformed
into a normal vector by a learnable network. MLP(c1, c2, c3) denotes the three-layer perceptron where the numbers of the channels in the

input, the middle, the last layers are c1, c2, and c3, respectively. In the MLP we applied the batch normalization and the ReLU after linear
transformation except for the last layer.

3.1. Point network

The point network is a variant of PointNet [30] and fo-
cuses on efficiently extracting local features from a given
point cloud. Similar to the PointNet, the point network is a
function that receives normalized N three-dimensional co-
ordinates denoted by x ∈ [−1, 1]N×3, and returns a set of
feature vectors with L elements (hlocal ∈ RN×L) that rep-
resents local shapes of a surface.

We explain the detail of the point network. Let xi ∈
[−1, 1]3 denote i-th element of x, and {x1

i , . . . , x
k
i } be a set

of nearest k points from point i. Using this notation, l-th
element of the output hlocal

i,l can be represented by

hlocal
i,l = max

j=1,...,k
{f(xj

i − xi)}l, (1)

where f : R3 #→ RL is a learnable function that maps the
3D coordinate into the L-dimensional feature vector, and
{·}l is the l-th element of the vector in the braces. In the im-
plementation, we set k = 32, and defined f by a three-layer
perceptron consisting of batch normalization functions and
rectified linear units.

Unlike the PointNet that applies the global max-pooling
function against all the points to encode the local features,
our point network computes its maximum value only from
neighboring points of a certain point. Although this algo-
rithm itself is similar to that in PointNet++ [31], which also
encodes local features with neighboring points, their ap-
proach and ours differ in the following two points. Firstly,
before computing local features, the PointNet++ samples
some representative points from a point cloud, whereas our

network does not perform such sampling process to support
sudden change between adjacent normal vectors. Secondly,
while PointNet++ repeats both of sampling and feature ex-
traction multiple times to extract spatial features from the
point cloud, our network does not need to repeat it multi-
ple times because it delegates the task of extracting spatial
features to the voxel network. This can simplify not only
the configuration of the point network, but also has another
advantage that the inference speed significantly improves.
The detail of this effect will be shown in Section 4.5.

3.2. Voxel network

The normal estimation with the point network often pro-
duces inconsistent results because the point network only
encodes local features. We compensate this shortcoming by
introducing the voxel network.

Unlike the point network that directly exploits the 3D
points, the voxel network (1) transforms all the points into
voxels, (2) extracts spatial feature vectors with 3D CNN,
and (3) converts them into points that contain these features.
We describe the detail of these steps in the following.

Firstly, the voxel network projects normalized N three-
dimensional points into voxels each of which contains a bi-
nary value. These voxels are mathematically expressed as
xvoxels ∈ {0, 1}D×D×D, where D denotes the resolution of
the voxel. In the experiments we set D = 32. Each voxel
represents whether any points are included or not, i.e., if
any points in a point cloud are included in a voxel, its value
is equal to one. After that, the voxel network memorizes
correspondence between a voxel and stored points.

Next, it extracts the spatial features with 3D U-Net [9],
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PointNet was comparable to others, its PGP score was sig-
nificantly lower than those of the other models. These re-
sults show that although the PointNet is suitable for encod-
ing global features, it is not sufficient for extracting local
and spatial features. We consider it is mainly due to the
effect of the global max-pooling layer.

In contrast, the PointNet++, which is an improved
version of PointNet, outperformed other existing models.
Specifically, the PGP score of the ModelNet40 achieved by
the PointNet++ was slightly larger than that of ours. Al-
though it seems to indicate that the PointNet++ success-
fully extracted the both the local and the spatial features, its
RMSE was significantly lower than ours. We will describe
its reason in Section 4.2.2.

It is also interesting to see that our network only contain-
ing the point network outperformed some existing methods.
In the case where the network can use local features only,
although it can correctly estimate the normals perpendicu-
lar to the surface, it cannot detect whether the normal faces
the outside of the object. For this reason, it seems that the
PGP obtained by the point network has an upper limit of
0.5. We consider the reason why it could achieve the value
higher than 0.5 is that the point network statistically esti-
mated the direction of the normal by the curvature of the
surface. We can also see that the PGP of the voxel network
in the SHREC15 was relatively lower than those of other
methods even though its RMSE was superior. It implies
that the voxel network failed to accurately estimate normal
vectors due to the discretization by introducing voxels.

Table 1 also shows that the result of our network with
both the point and the voxel networks outperformed other
models except for the PGP of PointNet++. It indicates that
our network could efficiently encode both the local and the
spatial features by introducing the two different networks.

4.2.2 Qualitative results

We also visualized the angle between the estimated normal
vector and the ground truth. Figure 3 shows the visualiza-
tion result of five objects retrieved from the test samples in
the ModelNet40 and the SHREC15. As with our method, it
seems that the PointNet++ encoded both the local and the
spatial features, however, we can also see that some nor-
mal vectors estimated by the PointNet++ faced inside of the
object. As we can see in the results of the SHREC15 (the
right two columns in Figure 3), this problem occurred when
the surface is concave, and this problem could not be solved
without encoding the spatial features more appropriately.

4.3. Normal estimation from noisy point cloud

4.3.1 Quantitative results

Many 3D points obtained by a sensor include some noises.
We evaluated the robustness of the proposed model by
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Figure 3. Visualization of normal vectors estimated by five differ-

ent methods. The angle of the error vector is projected to hue in
HSV color space. The blue color shows that the vector is vertical
to the object surface and its direction faces outside, whereas the

red color indicates that the vector is perpendicular but its direction
is opposite. Light blue, orange, and green colors mean that the
vector is not vertical.

adding artificial noise to the point cloud and estimated these
normal vectors.

In terms of our model, we employed the two methods to
estimate normal vectors from a point cloud with noise. The
former is a model that directly calculates the normal vec-
tors in an end-to-end manner, and the latter is a model that
first estimates 3D points without noise, and then computes
normal vectors from these points with another network con-
sisting of the point and the voxel networks. In this section,
we refer to the latter as “Ours (+denoising)”.

To confirm the robustness against the intensity of noise,
we trained our two models and the existing models while
adding perturbation noise drawn from a Gaussian distribu-
tion with a standard deviation σ (see Section 4.1 for details).

Figure 4 shows the relation between the RMSE, the PGP,
and the intensity of the perturbation noise. We can see that
the PointNet++ and our method (the point and the voxel
networks) were relatively robust to perturbation noise since
they can encode both features. It also reveals that the per-
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Figure 4. The PGP and the RMSE curves w.r.t. the intensity of
perturbation noise.

formance of the PointNet, which mainly encodes the global
features, was worse than those of others. This implies that
leveraging both of the local and the spatial features is signif-
icant for normal estimation from the point cloud including
noise.

Figure 4 also shows that compared with our model only
using a single network, the RMSE of our method using two
networks significantly decreased by 32% and its PGP also
increased by 33%. We describe this reason in the supple-
mentary material.

4.4. Application to Surface Reconstruction

We also show the results of the surface reconstruction
from the point clouds in Figure 5. Specifically, we esti-
mated the normal vectors with several methods including
ours and then obtained the 3D surface of an object by ap-
plying a Screened Poisson Reconstruction [18], a de facto
standard algorithm for estimating the 3D surface from the
normal vectors of 3D points. From the aspect of the experi-
mental result with a chair, the PointNet generated noisy 3D
surfaces, and a part of the surface created by the PointNet++
bulges unnaturally. Although the result with cow looks like
that every method can precisely estimate the 3D surfaces, it
can be seen that the surfaces of toes, horns, and ears gen-
erated by the existing methods also slightly bulge. In par-
ticular, the PointNet++ could not precisely estimate several
parts such as the ears and the belly. These results indicate
that while the existing methods often failed to precisely in-
fer the 3D surfaces because the estimation result of the nor-
mal vectors was not so accurate, the proposed method was
able to estimate the 3D mesh close to the ground truth.

4.5. Inference Time

To compare the inference time in each method, we mea-
sured the average time per sample with 1,200 models in
the SHREC15. The results are shown in Table 2. Note
that in this table, our model includes time to convert the
point cloud to the voxels and time required for its inverse
transform. We can see that the PointNet++ consumed more
time than the PointNet. It is due to the internal structure
of the PointNet++, which iteratively performs the process-
ing of the PointNet. In contrast, the computational cost of
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Figure 5. The 3D reconstruction from the estimated normal vec-

tors. “ground truth” means the 3D mesh reconstructed from the

ground truth vectors.

Table 2. The inference time of the existing and our methods.
OBNE OBNE HoughCNN HoughCNN

Method +MMSTV +MRFO +MMSTV +MRFO

msec/model 9643 5392 20743 16392

Method PointNet PointNet++ Ours

msec/model 25.8 243 33.4

our model was much lower than that of PointNet++ be-
cause it performs the operation like PointNet only once.
Although this inference time was slightly slower than the
PointNet, considering the RMSE and the PGP, it reveals that
our method has a clear advantage over the existing ones.

60

Normal estimation 
[Hashimoti and Saito, CVPR 2019]



Deep Parametric Continuous Convolution 
[Wang et al. 2018]

Kernel Point Convolution 
[Thomas et al. 2019]

SpiderCNN 
[Xu et al. 2018]

Point Cloud Convolutions

Slide: Charles R. Qi

Monte-Carlo Convolution 
[Hermosilla et al. 2018]



Point cloud deep learning: Applications

Qi et al. [CVPR 2017], Li et al. [CVPR 2019], Wang and Solomon [arXiv], Qi et al. [CVPR 2018]

Primitive fitting

Object detection in lidar scansPoint cloud alignment



Point cloud deep learning: Normal estimation

Guerrero et al. [Eurographics 2018], Boulch and Marlet [SGP 2016], Hashimoto and Saito [CVPR 2019]



Point cloud deep learning applications: generative models

Fan et al. [CVPR 2017], Yin et al. [SIGGRAPH 2018], Achlioptas et al. [ICML 2018], Groueix  et al. [CVPR 2018]

A Point Set Generation Network for

3D Object Reconstruction from a Single Image

Haoqiang Fan ⇤

Institute for Interdisciplinary
Information Sciences
Tsinghua University
fanhqme@gmail.com

Hao Su⇤ Leonidas Guibas
Computer Science Department

Stanford University
{haosu,guibas}@cs.stanford.edu

Abstract

Generation of 3D data by deep neural network has

been attracting increasing attention in the research com-

munity. The majority of extant works resort to regular

representations such as volumetric grids or collection of

images; however, these representations obscure the natural

invariance of 3D shapes under geometric transformations,

and also suffer from a number of other issues. In this paper

we address the problem of 3D reconstruction from a single

image, generating a straight-forward form of output – point

cloud coordinates. Along with this problem arises a unique

and interesting issue, that the groundtruth shape for an

input image may be ambiguous. Driven by this unorthodox

output form and the inherent ambiguity in groundtruth, we

design architecture, loss function and learning paradigm

that are novel and effective. Our final solution is a

conditional shape sampler, capable of predicting multiple

plausible 3D point clouds from an input image. In

experiments not only can our system outperform state-of-

the-art methods on single image based 3d reconstruction

benchmarks; but it also shows strong performance for 3d

shape completion and promising ability in making multiple

plausible predictions.

1. Introduction

As we try to duplicate the successes of current deep
convolutional architectures in the 3D domain, we face a
fundamental representational issue. Extant deep net archi-
tectures for both discriminative and generative learning in
the signal domain are well suited to data that is regularly
sampled, such as images, audio, or video. However,
most common 3D geometry representations, such as 2D
meshes or point clouds are not regular structures and do
not easily fit into architectures that exploit such regularity

⇤equal contribution

Input Reconstructed 3D point cloud

Figure 1. A 3D point cloud of the complete object can be
reconstructed from a single image. Each point is visualized as a
small sphere. The reconstruction is viewed at two viewpoints (0�
and 90� along azimuth). A segmentation mask is used to indicate
the scope of the object in the image.

for weight sharing, etc. That is why the majority of
extant works on using deep nets for 3D data resort to
either volumetric grids or collections of images (2D views
of the geometry). Such representations, however, lead to
difficult trade offs between sampling resolution and net
efficiency. Furthermore, they enshrine quantization artifacts
that obscure natural invariances of the data under rigid
motions, etc.

In this paper we address the problem of generating the
3D geometry of an object based on a single image of that
object. We explore generative networks for 3D geometry
based on a point cloud representation. A point cloud
representation may not be as efficient in representing the
underlying continuous 3D geometry as compared to a CAD
model using geometric primitives or even a simple mesh,
but for our purposes it has many advantages, A point cloud
is a simple, uniform structure that is easier to learn, as
it does not have to encode multiple primitives or combi-
natorial connectivity patterns. In addition, a point cloud
allows simple manipulation when it comes to geometric
transformations and deformations, as connectivity does not

1

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix1
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Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas
parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

Abstract
We introduce a method for learning to generate the sur-

face of 3D shapes. Our approach represents a 3D shape as
a collection of parametric surface elements and, in contrast
to methods generating voxel grids or point clouds, naturally
infers a surface representation of the shape. Beyond its nov-
elty, our new shape generation framework, AtlasNet, comes
with significant advantages, such as improved precision and
generalization capabilities, and the possibility to generate
a shape of arbitrary resolution without memory issues. We
demonstrate these benefits and compare to strong baselines
on the ShapeNet benchmark for two applications: (i) auto-
encoding shapes, and (ii) single-view reconstruction from
a still image. We also provide results showing its potential
for other applications, such as morphing, parametrization,
super-resolution, matching, and co-segmentation.

1. Introduction
Significant progress has been made on learning good rep-

resentations for images, allowing impressive applications
in image generation [17, 35]. However, learning a repre-
sentation for generating high-resolution 3D shapes remains
an open challenge. Representing a shape as a volumetric
function [7, 13, 31] only provides voxel-scale sampling of
the underlying smooth and continuous surface. In contrast, a
point cloud [25, 26] provides a representation for generating
on-surface details [9], efficiently leveraging sparsity of the
data. However, points do not directly represent neighborhood

⇤Work done at Adobe Research during TG’s summer internship

information, making it difficult to approximate the smooth
low-dimensional manifold structure with high fidelity.

To remedy shortcomings of these representations, sur-
faces are a popular choice in geometric modeling. A surface
is commonly modeled by a polygonal mesh: a set of ver-
tices, and a list of triangular or quad primitives composed
of these vertices, providing piecewise planar approximation
to the smooth manifold. Each mesh vertex contains a 3D
(XYZ) coordinate, and, frequently, a 2D (UV) embedding
to a plane. The UV parameterization of the surface provides
an effective way to store and sample functions on surfaces,
such as normals, additional geometric details, textures, and
other reflective properties such as BRDF and ambient occlu-
sion. One can imagine converting point clouds or volumetric
functions produced with existing learned generative models
as a simple post-process. However, this requires solving
two fundamental, difficult, and long-standing challenges in
geometry processing: global surface parameterization and
meshing.

In this paper we explore learning the surface representa-
tion directly. Inspired by the formal definition of a surface
as a topological space that locally resembles the Euclidean
plane, we seek to approximate the target surface locally by
mapping a set of squares to the surface of the 3D shape. The
use of multiple such squares allows us to model complex
surfaces with non-disk topology. Our representation of a
shape is thus extremely similar to an atlas, as we will discuss
in Section 3. The key strength of our method is that it jointly
learns a parameterization and an embedding of a shape. This
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Point cloud deep learning applications: proxy for mesh

Sung et al. [SIGGRAPH Asia 2017], Li et al. [SIGGRAPH Asia 2018], Sung et al. [NeurIPS 2018]

(a) Co-segmentation (b) Keypoint correspondence (c) Smooth function approximation

Figure 1: Inputs and outputs of various applications introduced in Section 3: (a) co-segmentation,
(b) keypoint correspondence, and (c) smooth function approximation problems. The inputs of (a)
and (b) are a random set of segments/keypoints (without any labels), and the outputs are single
segment/keypoint per atom in the dictionaries consistent across the shapes. The input of (c) is a
random linear combination of LB bases, and the outputs are synchronized atomic functions.

define canonical bases, and the synchronization is achieved from the mapping between each individual
set of bases and the canonical bases. In our model, the neural network becomes the synchronizer,
without any explicit canonical bases. Lastly, compared with classical dictionary learning works that
assume a universal dictionary for all data instances, we obtain a data-dependent dictionary that allows
non-linear distortion of atoms but still preserves consistency. This endows us additional modeling
power without sacrificing model interpretability.

1.1 Related Work

Since much has already been discussed above, we only cover important missing ones here.

Learning compact representations of signals has been widely studied in many forms such as factor
analysis and sparse dictionaries. Sparse dictionary methods learn an overcomplete basis of a collection
of data that is as succinct as possible and have been studied in natural language processing [9, 12],
time-frequency analysis [8, 22], video [25, 1], and images [21, 42, 5]. Encoding sparse and succinct
representations of signals has also been observed in biological neurons [27, 26, 28].

Since the introduction of functional maps [29], shape analysis on functional spaces has also been
further developed in a variety of settings [30, 20, 17, 11, 34, 24], and mappings between pre-computed
functional spaces have been studied in a deep learning context as well [23]. In addition to our work,
deep learning on point clouds has also been done on shape classification [32, 33, 19, 39], semantic
scene segmentation [15], instance segmentation [38], and 3D amodal object detection [31]. We
bridge these areas of research in a novel framework that learns, in a data-driven end-to-end manner,
data-adaptive dictionaries on the functional space of 3D shapes.

2 Problem Statement

Given a collection of shapes {Xi}, each of which has a sample function of specific semantic meaning
{fi} (e.g. indicator of a subset of semantic parts or keypoints), we consider the problem of sharing
the semantic information across the shapes, and predicting a functional dictionary A(X ;⇥) for
each shape that linearly spans all plausible semantic functions on the shape (⇥ denotes the neural
network weights). We assume that a shape is given as n points sampled on its surface, a function f is
represented with a vector in Rn (a scalar per point), and the atoms of the dictionary are represented
as columns of a matrix A(X ;⇥) 2 Rn⇥k, where k is a sufficiently large number for the size of the
dictionary. Note that the column space of A(X ;⇥) can include any function f if it has all Dirac
delta functions of all points as columns. We aim at finding a much lower-dimensional vector space
that also contains all plausible semantic functions. We also force the columns of A(X ;⇥) to encode
atomic semantics in applications, such as atomic instances in segmentation, by adding appropriate
constraints.

3 Deep Functional Dictionary Learning Framework

General Framework We propose a simple yet effective loss function, which can be applied to any
neural network architecture processing a 3D geometry as inputs. The neural network takes pairs
of a shape X including n points and a function f 2 Rn as inputs in training, and outputs a matrix
A(X ;⇥) 2 Rn⇥k as a dictionary of functions on the shape. The loss function needs to be designed
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Extract the surface

• Given an implicit representation, create a triangle mesh 

that approximates the surface: Marching cubes
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Extract the surface: Marching Cubes

• 256 different cases - 15 after symmetries, 6 ambiguous 

cases  

• More subsampling rules → 33 unique cases
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• Implicit surface prediction

Deep Marching Cubes

Liao et al. [CVPR 2018]



• Proposed alternative differentiable Marching Cubes

Deep Marching Cubes

Liao et al. [CVPR 2018]

• Per-vertex, occupancy probabilities O 
instead of signed distance 


• Vertex displacements X to specify 
triangle vertices


• Defined differentiable distribution over 
meshes, used for back-propagation
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• “Occupancy Networks: Learning 3D Reconstruction in Function Space”, by 
Mescheder et al.


• “Learning Implicit Fields for Generative Shape Modeling”, by Chen and 
Zhang


• “DeepSDF: Learning Continuous Signed Distance Functions for Shape 
Representation”, by Park et al.
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Abstract

With the advent of deep neural networks, learning-based
approaches for 3D reconstruction have gained popularity.
However, unlike for images, in 3D there is no canonical rep-
resentation which is both computationally and memory ef-
ficient yet allows for representing high-resolution geometry
of arbitrary topology. Many of the state-of-the-art learning-
based 3D reconstruction approaches can hence only repre-
sent very coarse 3D geometry or are limited to a restricted
domain. In this paper, we propose Occupancy Networks,
a new representation for learning-based 3D reconstruction
methods. Occupancy networks implicitly represent the 3D
surface as the continuous decision boundary of a deep neu-
ral network classifier. In contrast to existing approaches,
our representation encodes a description of the 3D output
at infinite resolution without excessive memory footprint.
We validate that our representation can efficiently encode
3D structure and can be inferred from various kinds of in-
put. Our experiments demonstrate competitive results, both
qualitatively and quantitatively, for the challenging tasks of
3D reconstruction from single images, noisy point clouds
and coarse discrete voxel grids. We believe that occupancy
networks will become a useful tool in a wide variety of
learning-based 3D tasks.

1. Introduction

Recently, learning-based approaches for 3D reconstruc-
tion have gained popularity [4,9,23,58,75,77]. In contrast
to traditional multi-view stereo algorithms, learned models
are able to encode rich prior information about the space of
3D shapes which helps to resolve ambiguities in the input.

While generative models have recently achieved remark-
able successes in generating realistic high resolution im-
ages [36, 47, 72], this success has not yet been replicated
in the 3D domain. In contrast to the 2D domain, the com-

†Part of this work was done while at MSR Cambridge.

(a) Voxel (b) Point (c) Mesh (d) Ours

Figure 1: Overview: Existing 3D representations discretize
the output space differently: (a) spatially in voxel represen-
tations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we pro-
pose to consider the continuous decision boundary of a clas-
sifier f✓ (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

munity has not yet agreed on a 3D output representation
that is both memory efficient and can be efficiently inferred
from data. Existing representations can be broadly cate-
gorized into three categories: voxel-based representations
[4,19,43,58,64,69,75] , point-based representations [1,17]
and mesh representations [34, 57, 70], see Fig. 1.

Voxel representations are a straightforward generaliza-
tion of pixels to the 3D case. Unfortunately, however, the
memory footprint of voxel representations grows cubically
with resolution, hence limiting naı̈ve implementations to
323 or 643 voxels. While it is possible to reduce the memory
footprint by using data adaptive representations such as oc-
trees [61, 67], this approach leads to complex implementa-
tions and existing data-adaptive algorithms are still limited
to relatively small 2563 voxel grids. Point clouds [1,17] and
meshes [34,57,70] have been introduced as alternative rep-
resentations for deep learning, using appropriate loss func-
tions. However, point clouds lack the connectivity structure
of the underlying mesh and hence require additional post-
processing steps to extract 3D geometry from the model.
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Figure 1: Occupancy Network Architecture. We first compute an embedding c of the input. We then feed the input points
through multiple fully-connected ResNet-blocks. In these ResNet-blocks, we use Conditional Batch-Normalization (CBN)
to condition the network on c. Finally, we project the output of our network to one dimension using a fully-connected layer
and apply the sigmoid function to obtain occupancy probabilities.

The respective encoder network depends on the task (Fig. 2): For single view 3D reconstruction we use a ResNet-18 ar-
chitecture [10] (Fig. 2a) which was pretrained on the ImageNet dataset [5]. However, we adjust the last fully-connected layer
to project the features to a 256-dimensional embedding c. For point cloud completion we use a PointNet encoder [7] (Fig. 2b)
with 5 ResNet-blocks. To enable communication between points at lower layers, we also add pooling and expansion layers
between the ResNet-blocks. After the ResNet-blocks, the final output is pooled using max-pooling and then projected to a
512 embedding vector using a fully-connected layer. For voxel super-resolution we use a 3D convolutional neural network
(Fig. 2c) that encodes the 323 input into a 256-dimensional embedding vector c. The encoder network g for unconditional
mesh generation is similar to the model shown in Fig. 2b, but we simply use four fully-connected blocks instead of the five
ResNet blocks. Moreover, we replace the last fully-connected layer with two fully-connected layers to produce both the mean
µ and log-standard-deviation log � of the 128 dimensional latent code z.

1.2. Data Preprocessing

For our experiments we use the ShapeNet [2] subset of Choy et al. [3]. We also use the same 323 voxelization, image
renderings and train/test split (80% and 20% of the whole dataset) as Choy et al. Moreover, we subdivide the training data
into a training (70% of the whole dataset) and a validation set (10% of the whole dataset) on which we track the loss of our
method and the baselines to determine when to stop training.

In order to determine if a point lies in the interior of a mesh (e.g., for measuring IoU), we need the meshes to be watertight.
We therefore use the code provided by Stutz et al. [18]2, which performs TSDF-fusion on random depth renderings of the
object, to create watertight versions of the meshes. We center and rescale all meshes so that they are aligned with the
voxelizations from [3]. In practice, this means that we transform the meshes so that the 3D bounding box of the mesh is
centered at 0 and its longest edge has a length of 1. We then sample 100k points offline in the unit cube centered at 0 with an
additional small padding of 0.05 on both sides and determine if the points lie inside or outside the watertight mesh. To this
end, we count the number of triangles that a ray which starts at the given point and which is parallel to the z-axis intersects.
If this number is even the point lies outside the mesh, otherwise it lies inside. We save both the positions of the 100k points
and their occupancies to a file. During training, we subsample 2048 points from this set (with replacement) as training data.
Similarly, we also sample 100k points from the surface of the object and save them to a file. When we train the Point Set
Generation Network (PSGN) [7], Pixel2Mesh [21] or Deep Marching Cubes (DMC) [14] we subsample a certain number of
points (the exact number depends on the method) from this set of points. We accelerated data preprocessing using the GNU
parallel tool [20].

Because Choy et al. [3] only provide 323 voxelizations in their dataset, we compute the voxelizations for the experiment in
2https://github.com/davidstutz/mesh-fusion

Occupancy networks [Mescheder et al.]
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Figure 1: Occupancy Network Architecture. We first compute an embedding c of the input. We then feed the input points
through multiple fully-connected ResNet-blocks. In these ResNet-blocks, we use Conditional Batch-Normalization (CBN)
to condition the network on c. Finally, we project the output of our network to one dimension using a fully-connected layer
and apply the sigmoid function to obtain occupancy probabilities.

The respective encoder network depends on the task (Fig. 2): For single view 3D reconstruction we use a ResNet-18 ar-
chitecture [10] (Fig. 2a) which was pretrained on the ImageNet dataset [5]. However, we adjust the last fully-connected layer
to project the features to a 256-dimensional embedding c. For point cloud completion we use a PointNet encoder [7] (Fig. 2b)
with 5 ResNet-blocks. To enable communication between points at lower layers, we also add pooling and expansion layers
between the ResNet-blocks. After the ResNet-blocks, the final output is pooled using max-pooling and then projected to a
512 embedding vector using a fully-connected layer. For voxel super-resolution we use a 3D convolutional neural network
(Fig. 2c) that encodes the 323 input into a 256-dimensional embedding vector c. The encoder network g for unconditional
mesh generation is similar to the model shown in Fig. 2b, but we simply use four fully-connected blocks instead of the five
ResNet blocks. Moreover, we replace the last fully-connected layer with two fully-connected layers to produce both the mean
µ and log-standard-deviation log � of the 128 dimensional latent code z.

1.2. Data Preprocessing

For our experiments we use the ShapeNet [2] subset of Choy et al. [3]. We also use the same 323 voxelization, image
renderings and train/test split (80% and 20% of the whole dataset) as Choy et al. Moreover, we subdivide the training data
into a training (70% of the whole dataset) and a validation set (10% of the whole dataset) on which we track the loss of our
method and the baselines to determine when to stop training.

In order to determine if a point lies in the interior of a mesh (e.g., for measuring IoU), we need the meshes to be watertight.
We therefore use the code provided by Stutz et al. [18]2, which performs TSDF-fusion on random depth renderings of the
object, to create watertight versions of the meshes. We center and rescale all meshes so that they are aligned with the
voxelizations from [3]. In practice, this means that we transform the meshes so that the 3D bounding box of the mesh is
centered at 0 and its longest edge has a length of 1. We then sample 100k points offline in the unit cube centered at 0 with an
additional small padding of 0.05 on both sides and determine if the points lie inside or outside the watertight mesh. To this
end, we count the number of triangles that a ray which starts at the given point and which is parallel to the z-axis intersects.
If this number is even the point lies outside the mesh, otherwise it lies inside. We save both the positions of the 100k points
and their occupancies to a file. During training, we subsample 2048 points from this set (with replacement) as training data.
Similarly, we also sample 100k points from the surface of the object and save them to a file. When we train the Point Set
Generation Network (PSGN) [7], Pixel2Mesh [21] or Deep Marching Cubes (DMC) [14] we subsample a certain number of
points (the exact number depends on the method) from this set of points. We accelerated data preprocessing using the GNU
parallel tool [20].

Because Choy et al. [3] only provide 323 voxelizations in their dataset, we compute the voxelizations for the experiment in
2https://github.com/davidstutz/mesh-fusion
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• Predict point occupancy


• Supervised training using 
ground truth occupancy


• Use multi-resolution 
surface extraction


Figure 2: Multiresolution IsoSurface Extraction: We first
mark all points at a given resolution which have already
been evaluated as either occupied (red circles) or unoccu-
pied (cyan diamonds). We then determine all voxels that
have both occupied and unoccupied corners and mark them
as active (light red) and subdivide them into 8 subvoxels
each. Next, we evaluate all new grid points (empty circles)
that have been introduced by the subdivision. The previous
two steps are repeated until the desired output resolution is
reached. Finally we extract the mesh using the marching
cubes algorithm [44], simplify and refine the output mesh
using first and second order gradient information.

we apply the Marching Cubes algorithm [44] to extract an
approximate isosurface

{p 2 R3 | f✓(p, x) = ⌧}. (5)

Our algorithm converges to the correct mesh if the occu-
pancy grid at the initial resolution contains points from ev-
ery connected component of both the interior and the ex-
terior of the mesh. It is hence important to take an initial
resolution which is high enough to satisfy this condition.
In practice, we found that an initial resolution of 323 was
sufficient in almost all cases.

The initial mesh extracted by the Marching Cubes algo-
rithm can be further refined. In a first step, we simplify
the mesh using the Fast-Quadric-Mesh-Simplification algo-
rithm3 [20]. Finally, we refine the output mesh using first
and second order (i.e., gradient) information. Towards this
goal, we sample random points pk from each face of the
output mesh and minimize the loss

KX

k=1

(f✓(pk, x)� ⌧)2 +�

����
rpf✓(pk, x)

krpf✓(pk, x)k
� n(pk)

����
2

(6)

where n(pk) denotes the normal vector of the mesh at pk. In
practice, we set � = 0.01. Minimization of the second term

3https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification

in (6) uses second order gradient information and can be ef-
ficiently implemented using Double-Backpropagation [15].

Note that this last step removes the discretization arti-
facts of the Marching Cubes approximation and would not
be possible if we had directly predicted a voxel-based rep-
resentation. In addition, our approach also allows to effi-
ciently extract normals for all vertices of our output mesh
by simply backpropagating through the occupancy network.
In total, our inference algorithm requires 3s per mesh.

3.4. Implementation Details

We implemented our occupancy network using a fully-
connected neural network with 5 ResNet blocks [29] and
condition it on the input using conditional batch normal-
ization [13, 16]. We exploit different encoder architectures
depending on the type of input. For single view 3D recon-
struction, we use a ResNet18 architecture [29]. For point
clouds we use the PointNet encoder [54]. For voxelized in-
puts, we use a 3D convolutional neural network [45]. For
unconditional mesh generation, we use a PointNet [54] for
the encoder network g . More details are provided in the
supplementary material.

4. Experiments

We conduct three types of experiments to validate the
proposed occupancy networks. First, we analyze the repre-

sentation power of occupancy networks by examining how
well the network can reconstruct complex 3D shapes from a
learned latent embedding. This gives us an upper bound on
the results we can achieve when conditioning our represen-
tation on additional input. Second, we condition our occu-
pancy networks on images, noisy point clouds and low reso-
lution voxel representations, and compare the performance
of our method to several state-of-the-art baselines. Finally,
we examine the generative capabilities of occupancy net-
works by adding an encoder to our model and generating
unconditional samples from this model.4

Baselines: For the single image 3D reconstruction task, we
compare our approach against several state-of-the-art base-
lines which leverage various 3D representations: we eval-
uate against 3D-R2N2 [9] as a voxel-based method, Point
Set Generating Networks (PSGN) [17] as a point-based
technique and Pixel2Mesh [70] as well as AtlasNet [26] as
mesh-based approaches. For point cloud inputs, we adapted
3D-R2N2 and PSGN by changing the encoder. As mesh-
based baseline, we use Deep Marching Cubes (DMC) [43]
which has recently reported state-of-the-art results on this
task. For the voxel super-resolution task we assess the im-
provements wrt. the input.

4The code to reproduce our experiments is available under https://
github.com/LMescheder/Occupancy-Networks.

Image: L. Mescheder
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Input 3D-R2N2 PSGN Pix2Mesh AtlasNet Ours

Figure 5: Single Image 3D Reconstruction. The input im-
age is shown in the first column, the other columns show
the results for our method compared to various baselines.

4.2. Single Image 3D Reconstruction

In our second experiment, we condition the occupancy
network on an additional view of the object from a random
camera location. The goal of this experiment is to eval-
uate how well occupancy functions can be inferred from
complex input. While we train and test our method on the
ShapeNet dataset, we also present qualitative results for the
KITTI [22] and the Online Products dataset [49].

ShapeNet: In this experiment, we use a ResNet-18 image
encoder, which was pretrained on the ImageNet dataset. For
a fair comparison, we use the same image encoder for both
3D-R2N2 and PSGN5. For PSGN we use a fully connected
decoder with 4 layers and 512 hidden units in each layer.
The last layer projects the hidden representation to a 3072
dimensional vector which we reshape into 1024 3D points.
As we use only a single input view, we remove the recur-
rent network in 3D-R2N2. We reimplemented the method
of [70] in PyTorch, closely following the Tensorflow imple-
mentation provided by the authors. For the method of [26],
we use the code and pretrained model from the authors6.

5See supplementary for a comparison to the original architectures.
6https://github.com/ThibaultGROUEIX/AtlasNet

For all methods, we track the loss and other metrics on
the validation set and stop training as soon as the target met-
ric reaches its optimum. For 3D-R2N2 and our method
we use the IoU to the ground truth mesh as target metric,
for PSGN and Pixel2Mesh we use the Chamfer distance to
the ground truth mesh as target metric. To extract the final
mesh, we use a threshold of 0.4 for 3D-R2N2 as suggested
in the original publication [9]. To choose the threshold pa-
rameter ⌧ for our method, we perform grid search on the
validation set (see supplementary) and found that ⌧ = 0.2
yields a good trade-off between accuracy and completeness.

Qualitative results from our model and the baselines are
shown in Fig. 5. We observe that all methods are able to
capture the 3D geometry of the input image. However,
3D-R2N2 produces a very coarse representation and hence
lacks details. In contrast, PSGN produces a high-fidelity
output, but lacks connectivity. As a result, PSGN requires
additional lossy post-processing steps to produce a final
mesh7. Pixel2Mesh is able to create compelling meshes,
but often misses holes in the presence of more complicated
topologies. Such topologies are frequent, for example, for
the “chairs“ category in the ShapeNet dataset. Similarly,
AtlasNet captures the geometry well, but produces artifacts
in form of self-intersections and overlapping patches.

In contrast, our method is able to capture complex
topologies, produces closed meshes and preserves most of
the details. Please see the supplementary material for addi-
tional high resolution results and failure cases.

Quantitative results are shown in Table 1. We observe
that our method achieves the highest IoU and normal con-
sistency to the ground truth mesh. Surprisingly, while not
trained wrt. Chamfer distance as PSGN, Pixel2Mesh or At-
lasNet, our method also achieves good results for this met-
ric. Note that it is not possible to evaluate the IoU for PSGN
or AtlasNet, as they do not yield watertight meshes.

Real Data: To test how well our model generalizes to real
data, we apply our network to the KITTI [22] and Online
Products datasets [49]. To capture the variety in viewpoints
of KITTI and Online Products, we rerendered all ShapeNet
objects with random camera locations and retrained our net-
work for this task.

For the KITTI dataset, we additionally use the instance
masks provided in [2] to mask and crop car regions. We
then feed these images into our neural network to predict
the occupancy function. Some selected qualitative results
are shown in Fig. 6a. Despite only trained on synthetic data,
we observe that our method is also able to generate realistic
reconstructions in this challenging setting.

For the Online Products dataset, we apply the same pre-
trained model. Several qualitative results are shown in
Fig. 6b. Again, we observe that our method generalizes rea-

7See supplementary material for meshing results.
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Abstract

We advocate the use of implicit fields for learning gen-
erative models of shapes and introduce an implicit field de-
coder, called IM-NET, for shape generation, aimed at im-
proving the visual quality of the generated shapes. An im-
plicit field assigns a value to each point in 3D space, so
that a shape can be extracted as an iso-surface. IM-NET
is trained to perform this assignment by means of a binary
classifier. Specifically, it takes a point coordinate, along
with a feature vector encoding a shape, and outputs a value
which indicates whether the point is outside the shape or
not. By replacing conventional decoders by our implicit de-
coder for representation learning (via IM-AE) and shape
generation (via IM-GAN), we demonstrate superior results
for tasks such as generative shape modeling, interpolation,
and single-view 3D reconstruction, particularly in terms of
visual quality. Code and supplementary material are avail-
able at https://github.com/czq142857/implicit-decoder.

1. Introduction
Unlike images and video, 3D shapes are not confined to

one standard representation. Up to date, deep neural net-
works for 3D shape analysis and synthesis have been devel-
oped for voxel grids [19, 48], multi-view images [42], point
clouds [1, 35], and integrated surface patches [17]. Specific
to generative modeling of 3D shapes, despite the many pro-
gresses made, the shapes produced by state-of-the-art meth-
ods still fall far short in terms of visual quality. This is re-
flected by a combination of issues including low-resolution
outputs, overly smoothed or discontinuous surfaces, as well
as a variety of topological noise and irregularities.

In this paper, we explore the use of implicit fields for
learning deep models of shapes and introduce an implicit
field decoder for shape generation, aimed at improving the
visual quality of the generated models, as shown in Fig-
ure 1. An implicit field assigns a value to each point
(x, y, z). A shape is represented by all points assigned to
a specific value and is typically rendered via iso-surface
extraction such as Marching Cubes. Our implicit field de-

Figure 1: 3D shapes generated by IM-GAN, our implicit
field generative adversarial network, which was trained on
643 or 1283 voxelized shapes. The output shapes are sam-
pled at 5123 resolution and rendered after Marching Cubes.

coder, or simply implicit encoder, is trained to perform this
assignment task, by means of a binary classifier, and it has a
very simple architecture; see Figure 2. Specifically, it takes
a point coordinate (x, y, z), along with a feature vector en-
coding a shape, and outputs a value which indicates whether
the point is outside the shape or not. In a typical application
setup, our decoder, which is coined IM-NET , would follow
an encoder which outputs the shape feature vectors and then
return an implicit field to define an output shape.

Several novel features of IM-NET impact the visual
quality of the generated shapes. First, the decoder output
can be sampled at any resolution and is not limited by the
resolution of the training shapes; see Figure 1. More im-
portantly, we concatenate point coordinates with shape fea-
tures, feeding both as input to our implicit decoder, which
learns the inside/outside status of any point relative to a
shape. In contrast, a classical convolution/deconvolution-
based neural network (CNN) operating on voxelized shapes
is typically trained to predict voxels relative to the extent
of the bounding volume of a shape. Such a network learns
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Mesh-based representation

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based Volumetric Point Cloud Mesh-based
Signed 

distance- 
based



Pros and Cons of Mesh representations

Accurate approximations of the continuous surface

Compact: Only the surface is encoded (contrary to volumetric
methods)

Flexible: Only a handful of points can represent large
approximately planar surfaces

No post processing needed to render a continuous object

Invariance can be built-in (e.g invariance to isometries by
operating on the metric)

Non-euclidean operators needed
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Pros and Cons of Mesh representations

Accurate approximations of the continuous surface

Compact: Only the surface is encoded (contrary to volumetric
methods)

Flexible: Only a handful of points can represent large
approximately planar surfaces

No post processing needed to render a continuous object

Invariance can be built-in (e.g invariance to isometries by
operating on the metric)

Non-euclidean operators needed

Birth of Geometric Deep Learning



What is Geometric Deep Learning?

Bronstein et al., SPM 2017



What is Geometric Deep Learning?

Battaglia et al.,arxiv 2018



What is Geometric Deep Learning?

Goal:
Design learnable operators

Optimise them w.r.t a specific task

How?
Incorporate appropriate inductive biases related to the data structure
and the task

Encode priors and desired properties



Inductive bias of the structure of the data: Domain

Fixed Domain

Social network

(fixed graph)

registered 3D meshes

Bogo et al., CVPR 2017



Inductive bias of the structure of the data: Domain

Di↵erent Domains

Molecules 3D meshes with di↵erent connectivity

Simonovsky and Komodakis, ICANN 2019



Inductive bias of the structure of the data: Domain

Unknown Domain(s)

Social network with unknown connectivity

(graph metric has to be learnt)

3D point clouds

(no triangulation)



Inductive bias of the task: Graph classification

Molecule classification Shape retrieval

Duvenaud et al., NIPS 2015



Inductive bias of the task: Vertex classification

Community detection Shape correspondences



Inductive bias of the task: Graph synthesis

Topology generation Mesh synthesis

(topology and signal)

You et al., ICML 2018, Smith et al., ICML 2019



Priors and desired properties: Revisiting CNNs

Stationarity (Convolutions)

Compositionality (Spatial localisation of filters + Hierarhical
structure)

O(1) parameters per filter (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

O(log n) layers in classification tasks

LeCun et al. 1989
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Priors and desired properties: Going non-euclidean

Do this properties hold for non-euclidean
domains?

Assumption: Non-Euclidean data are locally
stationary and manifest hierarchical structures



Challenges

How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

1 Permutation invariance: Graph structured data do not admit a global

ordering
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Challenges

How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

1 Permutation invariance: Graph structured data do not admit a global

ordering

2 Transferability of the filters across local neighbourhoods (analogous

to translation)



How to transfer filters across the same non-euclidean
domain?
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Challenges

How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

1 Permutation invariance: Graph structured data do not admit a global

ordering

2 Transferability of the filters across local neighbourhoods (analogous

to translation)

3 Transferability of the filters when dealing with multiple graphs



How to transfer filters across di↵erent domains?

Image analogy: Can we use the same filters for low and high resolution
images?



Challenges

How to extend euclidean operators, such as convolution and pooling,
to non-euclidean-domains?

1 Permutation invariance: Graph structured data do not admit a global

ordering

2 Transferability of the filters across local neighbourhoods (analogous

to translation)

3 Transferability of the filters when dealing with multiple graphs

4 Transferability of the filters when dealing with multiple graphs

Scalability: How to make them fast (and ideally parallelizable)?



Di↵erent Perspectives: Graph Convolutions vs Message
Passing

Graph Convolutions

Spectral Patch Operator based (aka Spatial)

(figure by Thomas Kipf)

Message Passing

They boil down to the same thing!



1 Introduction to Geometric Deep Learning

2 Graphs: Fundamentals

3 Graph Convolutions

Spectral Approaches

Patch-based approaches

4 Message Passing

5 Ordering-Based Graph Convolutions

6 Applications: Generative models for 3D shapes



Graphs: notations and basics

Weighted undirected graph G = (E ,V)
with vertices V = {1, . . . , n}, edges
E ✓ V ⇥ V.

Edge weights wij � 0 for (i, j) 2 E and
Vertex weights ai > 0 for i 2 V

Functions over the vertices
L2(V) = {f : V ! R} represented as
vectors f = (f1, . . . , fn)

Functions over the edges
L2(E) = {F : E ! R}

fi

Fij



Graphs: notations and basics

Laplacian � : L2(V) ! L2(V)

= fi
1

ai

X

j:(i,j)2E

wij �

X

j:(i,j)2E

wijfj

di↵erence between f and its local average

fi

fj



Graphs: notations and basics

Laplacian � : L2(V) ! L2(V)

= fi
1

ai

X

j:(i,j)2E

wij �

X

j:(i,j)2E

wijfj

di↵erence between f and its local average

fi

fj

Represented as a positive semi-definite n⇥ n matrix � = A�1(D�W)
where W = (wij), A = diag(a1, a2 . . . an) and D = diag(

P
j 6=i wij).

Symmetric Normalized Laplacian: � = I �D�1/2WD�1/2



1 Introduction to Geometric Deep Learning

2 Graphs: Fundamentals

3 Graph Convolutions

Spectral Approaches

Patch-based approaches

4 Message Passing

5 Ordering-Based Graph Convolutions

6 Applications: Generative models for 3D shapes



Di↵erent Perspectives: Graph Convolutions vs Message
Passing

Graph Convolutions

Spectral Patch Operator based (aka Spatial)

Message Passing



Revisiting Euclidean Convolution

Given two functions f, g : [�⇡,⇡] ! R their convolution is a
function

(f ? g)(x) =

Z ⇡

�⇡
f(x0)g(x� x0)dx0

Traditional convolution needs to translate the kernel g across
di↵erent locations of the domain.

The notion of translation in a non-euclidean domain is elusive.

Convolution theorem:“The fourier transform of the convolution
between two functions is the dot product of their fourier coe�cients”

(f ? g) = F
�1

{F(f) · F(g)}

Fourier transform on a non-euclidean domain?



Convolution Theorem

Fourier basis in non-euclidean domains: eigenvectors of the
Laplacian � = i.e.

�� = �⇤

Convolution theorem:“The fourier transform of the convolution
between two functions is the dot product of their fourier coe�cients”

(f ? g) = F
�1

{F(f) · F(g)}

Spectral convolution of f ,g 2 L2(V) can be defined by analogy

f ? g =
X

k�1

hf ,�kiL2(V)hg,�kiL2(V)

| {z }
product in the Fourier domain

�k

| {z }
inverse Fourier transform
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Convolution Theorem

In matrix-vector notation:

f ? g = �|{z}
inverse Fourier

· (�>g) � (�>f)| {z }
product in the Fourier domain

f ? g = �G(�>f)

where G = diag(ĝ1, ĝ2 . . . ĝn), the fourier coe�cients of g

G can be learned!
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where G = diag(ĝ1, ĝ2 . . . ĝn), the fourier coe�cients of g

G can be learned!



Spectral graph CNN

Convolutional layer expressed in the spectral domain

F0
j = ⇠

 
dinX

i=1

�Gi,j�
>Fi

!
i = 1, . . . , din
j = 1, . . . , dout

where ⇠ a non-linearity, Gi,j = n⇥ n diagonal matrix of filter coe�cients
for the input dimension i and output dimension j.

Bruna et al., ICLR 2014
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Spectral graph CNN

Convolutional layer expressed in the spectral domain

F0
j = ⇠

 
dinX

i=1

�Gi,j�
>Fi

!
i = 1, . . . , din
j = 1, . . . , dout

where ⇠ a non-linearity, Gi,j = n⇥ n diagonal matrix of filter coe�cients
for the input dimension i and output dimension j.

No guarantee of spatial localization of filters
O(n) parameters per layer

O(n2) computation of forward and inverse Fourier transforms
�>,� (no FFT on graphs)

Filters are basis-dependent ) does not generalize across graphs!

Bruna et al., ICLR 2014



ChebNet: Spectral graph CNN with polynomial filters

Parametrise filter G, as a polynomial of the eigenvalue matrix

G =
rX

k=0

↵k⇤
k
m

where ↵ = (↵0, . . . ,↵r)> is the vector of filter parameters

De↵errard, Bresson and Vandergheynst, NIPS 2016



ChebNet: Spectral graph CNN with polynomial filters

Parametrise filter G, as a polynomial of the eigenvalue matrix

G =
rX

k=0

↵k⇤
k
m

where ↵ = (↵0, . . . ,↵r)> is the vector of filter parameters

Now the convolution becomes

f ? g = �
rX

k=0

ak⇤
k�>f

f ? g =
rX

k=0

ak�
kf

De↵errard, Bresson and Vandergheynst, NIPS 2016



ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coe�cients)

F0
j = ⇠

 
dinX

i=1

rX

k=0

ai,j,k Tk(�)Fi

!
i = 1, . . . , din
j = 1, . . . , dout

where Tk is the Chebyshev polynomial of order k.

Filters have guaranteed r-hops support

De↵errard, Bresson and Vandergheynst, NIPS 2016
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ChebNet: Spectral graph CNN with polynomial filters

Convolutional layer with Chebyshev Polynomial filters (stable under
perturbations of coe�cients)

F0
j = ⇠

 
dinX

i=1

rX

k=0

ai,j,k Tk(�)Fi

!
i = 1, . . . , din
j = 1, . . . , dout

where Tk is the Chebyshev polynomial of order k.

Filters have guaranteed r-hops support

O(1) parameters per layer

No explicit computation of �>,� ) O(n) computational
complexity (assuming sparsely-connected graph)

Isotropic kernels
Domain dependent (di↵erent Laplacian for each graph)

De↵errard, Bresson and Vandergheynst, NIPS 2016



Graph Convolutional Network (GCN): Simplified ChebNet -
Going deeper

First order polynomial

More layers are preferred over larger respective fields

Stack multiple layers. First actually “deep” architecture on graphs

F0 = ⇠
⇣
D̃�1/2W̃D̃�1/2FG

⌘

(figure by Thomas Kipf)

Kipf and Welling, ICLR 2017



Example: citation networks

GCN: First state-of-the art GraphNN for graph classification tasks

Method Cora1 PubMed2

Manifold Regularization3 59.5% 70.7%
Semidefinite Embedding4 59.0% 71.1%
Label Propagation5 68.0% 63.0%
DeepWalk6 67.2% 65.3%
Planetoid7 75.7% 77.2%
Graph Convolutional Net8 81.59% 78.72%

Classification accuracy of di↵erent methods on citation network datasets

Monti et al. 2016; data: 1,2Sen et al. 2008; methods: 3Belkin et al. 2006; 4Weston
et al. 2012; 5Zhu et al. 2003; 6Perozzi et al. 2014; 7Yang et al. 2016; 8Kipf, Welling
2016



Di↵erent Perspectives: Graph Convolutions vs Message
Passing

Graph Convolutions

Spectral Patch Operator based (aka Spatial)

Message Passing



How to transfer filters across the same non-euclidean
domain?
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Revisiting CNNs in the spatial domain: Patch operators

Recall the definition of convolution on a 2D grid:

(f ? g)(x) =
X

x02supp(g)

g(x0)f(x� x0)

x

x� x0



Revisiting CNNs in the spatial domain: Patch operators

Patch Operator: This amount to mapping each filter parameter
g(x0) to one value of the function f(y): (D(x)f)(x0) = f(y)

(f ? g)(x) =
X

x02supp(g)

g(x0)(D(x)f)(x0)

x

y



Patch operator on Non-euclidean domains

x

w1(x, ·) on a grid

x

w1(x, ·) on a graph

Instead of having a “1-1” mapping between patches and filter
parameters, define K “generalized patches” as follows:

Define a weighting function for each patch wk(x, y), assigning
weights to a pair of vertices x, y.

Masci⇤, Boscaini⇤, et al., ICCVW-3DRR 2015



Patch operator on Non-euclidean domains

x

w2(x, ·) on a grid

x

w2(x, ·) on a graph

Instead of having a “1-1” mapping between patches and filter
parameters, define K “generalized patches” as follows:

Define a weighting function for each patch wk(x, y), assigning
weights to a pair of vertices x, y.

Dk(x)(f) =
P

y2N (x) wk(x, y)f(y)

Masci⇤, Boscaini⇤, et al., ICCVW-3DRR 2015



Patch Operator based convolution

Patch Operator based convolution of f 2 L2(X ) with discrete filter
g = (g1, . . . , gK)

(f ? g)(x) =
KX

k=1

gkDk(x)f

Matrix-vector notation

f ? g = g>(Df)

where g = (g1, . . . , gK)> is the filter and Df is an n⇥K matrix
containing patches evaluated at each point as rows.



Geodesic CNN

(D(x)f)(⇢, ✓) =

Z

X
w⇢(x, x

0)w✓(x, x
0)

| {z }
w⇢✓(x,x0)

f(x0) dx0

⇢

Radial weight

w⇢(x, x
0) / e�(dX (x,x0)�⇢)2/�2

⇢

�

Angular weight

w✓(x, x
0) / e�d2X (�✓(x),x

0)/�2
✓

Kokkinos et al., CVPR 2012



Geodesic CNN (GCNN)

Convolutional layer expressed in the spatial domain using geodesic polar
patch operator + angular max pooling to solve rotational ambiguity

F 0(x)=max
�✓

⇠

✓X

⇢,✓

(D(x)F )(⇢, ✓) G(⇢, ✓ +�✓)

◆

G(⇢, ✓) 2 Rdin⇥dout the learnable parameters for each patch

Spatially-localized filters

O(1) parameters per layer

All operations are local ) O(n) computational complexity

Anisotropic Kernels

Domain independent (patches defined locally on the continuous
domain)
Expensive pre-computation of patches
Handcrafted patch operators - applicable only on shapes
Rotation ambiguity (faced by angular max-pooling here)

Masci⇤, Boscaini⇤, et al., ICCVW-3DRR 2015
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Handcrafted patch operators - applicable only on shapes
Rotation ambiguity (faced by angular max-pooling here)

Masci⇤, Boscaini⇤, et al., ICCVW-3DRR 2015



Mixture Model Networks: Learnable patch operator

Define Local system of coordinates
u(x, y) around x (e.g. geodesic
polar)

Learnable weights:
w1(u), . . . , wK(u) functions of u,
e.g. Gaussians

wk = exp
�
�(u� µk)

>⌃�1
k (u� µk)

�

x

y

Monti⇤, Boscaini⇤, et al., CVPR 2017
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Mixture Model Networks: Learnable patch operator

Define Local system of coordinates
u(x, y) around x (e.g. geodesic
polar)

Learnable weights:
w1(u), . . . , wK(u) functions of u,
e.g. Gaussians

wk = exp
�
�(u� µk)

>⌃�1
k (u� µk)

�

Now the convolution with filter g
becomes:

(f?g)(x) =
X

y2N (x)

KX

k=1

gkwµk,⌃k(u(x, y))

| {z }
Gaussian mixture

f(y)

x

y

Monti⇤, Boscaini⇤, et al., CVPR 2017



Mixture Model Networks (MoNet)

Convolutional layer expressed in the spatial domain

F 0(x) = ⇠

0

@
X

y2N (x)

KX

k=1

wk(u(x, y))F (y)Gk

1

A , Gk 2 Rdin⇥dout

Spatially-localized filters

O(1) parameters per layer

All operations are local ) O(n) computational complexity

Anisotropic Kernels

Domain independent (patches defined locally on the continuous
domain)
Learnable patch operators - applicable on general graphs
Hancrafted pseudo-coordinates and expensive pre-computation
Orientation ambiguity for meshes (if the pseudo-coordinates are
defined on the input space)

Monti⇤, Boscaini⇤, et al., CVPR 2017
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MoNet as generalization of previous methods

Method Coordinates u(x, y) Weight function w⇥(u)
CNN1 u(x0)� u(x) �(u� v)

fixed parameters ⇥ = v

GCN2 deg(x), deg(x0)
⇣
1� |1� 1p

u1
|

⌘⇣
1� |1� 1p

u2
|

⌘

GCNN3 ⇢(x, x0), ✓(x, x0) exp
⇣
�

1
2 (u� v)>

⇣
�2
⇢

�2
✓

⌘�1

(u� v)
⌘

fixed parameters ⇥ = (v,�⇢,�✓)

ACNN4 ⇢(x, x0), ✓(x, x0) exp
�
�tu>R' ( ↵ 1 )R

>
'u
�

fixed parameters ⇥ = (↵,', t)

MoNet5 ⇢(x, x0), ✓(x, x0) exp
�
�

1
2 (u� µ)>⌃�1(u� µ)

�

learnable parameters ⇥ = (µ,⌃)

Some CNN models can be considered as particular settings of MoNet

with weighting functions of di↵erent form

Methods: 1LeCun et al. 1998; 2Kipf, Welling 2016; 3Masci et al. 2015; 4Boscaini et
al. 2016; 5Monti et al. 2016



Learn the Patch Operator in the feature space

Engineering the pseudo-coordinates requires domain knowledge.

Verma et al., CVPR 2018, Veličković et al., ICLR 2018



Learn the Patch Operator in the feature space

Engineering the pseudo-coordinates requires domain knowledge.

Solution: Learn the weighting functions wk directly from the feature
space:

wk(x, y) = wk(F (x),F (y))

Verma et al., CVPR 2018, Veličković et al., ICLR 2018
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Learn the Patch Operator in the feature space

Engineering the pseudo-coordinates requires domain knowledge.

Solution: Learn the weighting functions wk directly from the feature
space:

wk(x, y) = wk(F (x),F (y))

FeastNet: wk(x, y) = softmaxk2{0···K}(a
T
k [F (x)||F (y)] + ck)

Graph Attention:
wk(x, y) = softmaxy2N (x)(LeakyReLU(aT

k [GkF (x)||GkF (y)]))

(figure by Petar Veličković:

3-headed graph attention mechanism)

Verma et al., CVPR 2018, Veličković et al., ICLR 2018



Feature-Steered Graph Convolutions (FeastNet)

FeastNet Convolutional layer

F 0(x) = ⇠

0

@
X

y2N (x)

KX

k=1

wk(F (x),F (y)) F (y)Gk

1

A , Gk 2 Rdin⇥dout

Spatially-localized filters

O(1) parameters per layer

All operations are local ) O(n) computational complexity

Anisotropic Kernels

Domain independent

Learnable weight functions - no engineering needed
No guarantee that the weighting functions will have a small
support ) possibly all the vertices might contribute in the
calculation of a patch k ) Harder to optimize.
Geometry agnostic - potentially sensitive to remeshing

Verma et al., CVPR 2018
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Graph Attention Networks (GAT)

GAT layer

F 0(x) = ⇠

0

@
����

����
K

k=1

X

y2N (x)

wk(F (x),F (y)) F (y)Gk

1

A , Gk 2 Rdin⇥dout

Spatially-localized filters

O(1) parameters per layer

All operations are local ) O(n) computational complexity

Anisotropic Kernels

Domain independent
Learnable weight functions - no engineering needed
Easier to optimize due to the concatenation of the patches and the
softmax normalization of the weights across each neighborhood
Geometry agnostic - potentially sensitive to remeshing

Veličković et al., ICLR 2018
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Di↵erent Perspectives: Graph Convolutions vs Message
Passing

Graph Convolutions

Spectral Patch Operator based (aka Spatial)

Message Passing



The Message Passing paradigm

Node features are learned by exchanging information with
neighbouring nodes (originally introduced in the first Graph Neural
Network, Scarselli, Gori et al. 2009)

Draws inspiration from traditional di↵usion processes in graphs (e.g.
random walks)

The message passing operation is repeated for a certain amount of
steps ) similarly to Recurrent Neural Networks (RNNs)

By unrolling the time-steps, this framework is equivalent to
the feed-forward networks described so far.



Graph Network

Most general framework so far.

Let G a graph with vertex signals F (x) and edge signals E(x, y) and
u a global signal associated

F (x) E(x, y) u

Battaglia et al., arxiv 2018



Graph Network algorithm

1 The edge attributes are updated by the edge update function �E(·).

É(x, y) = �E(E(x, y),F (x),F (y),u)

In MoNet:

É(x, y) =
KX

k=1

wk(u(x, y))F (y)Gk

F (x) E0(x, y) u

Battaglia et al., arxiv 2018



Graph Network algorithm
2 The edge attributes of all the edges associated with a vertex are

aggregated by a permutation invariant aggregation function.

Ē(x) = ⇢E!V({É(x, y)}{y2N (x)}) (1)

In MoNet: Ē(x) =
P

y2N (x) É(x, y)

F 0(x) E0(x, y) u

3 The node attributes are updated by the node update function �V(·).

F́ (x) = �V(Ē(x),F (x),u) (2)

In MoNet: F́ (x) = ⇠(Ē(x))

Battaglia et al., arxiv 2018



Graph Network algorithm

4 All the edge attributes and all the node attributes are aggregated by
a pair of permutation invariant aggregation functions.

Ê = ⇢E!u({É(x, y)}{(x,y)2E})

F̂ = ⇢V!u({F́ (x)}{x2V})

F 0(x)
E0(x, y)

u0

5 Finally the global attribute is updated.

ú = �u(Ê, V̂ ,u) (3)

Battaglia et al., arxiv 2018
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Inductive bias of the domain: Fixed connectivity

How does existing work model the connectivity of the graph?



Inductive bias of the domain: Fixed connectivity

How does existing work model the connectivity of the graph?

Spectral methods: Through the graph Laplacian (or its
eigen-decomposition)

f ? g =
rX

k=0

ak�
kf

Di↵erent signal values on the same node always undergo the same
transformation.

Isotropic Kernels



Inductive bias of the domain: Fixed connectivity

How does existing work model the connectivity of the graph?

Patch-based:

(f ? g)(x) =
X

y2N (x)

KX

k=1

gkwk(u(x, y))f(y)

Anisotropic Kernels

Connectivity prior not explicitly modelled: Di↵erent signals values on
the same node undergo di↵erent transformations (depending on the
signal values themselves)



Inductive bias of the domain: Fixed connectivity

Can we have anisotropic kernels and explicit modelling of the
connectivity at the same time?

Reformulate the patch operator to depend only on the connectivity.

“Hard” assignments between nodes and parameters (easier to
optimise).



Ordering-Based Graph Convolutions

Solution: locally order the vertices!

For kernels equal to the maximum number of neighbours
K = max(|N (x)|):

(f ? g)(x) =
X|N (x)|

k=1
gkf(xk).

where N (x) = {x1, . . . , x|N (x)|} the neighbourhood of x (inc. x)
ordered in some fixed way.

The above formulation is equivalent with traditional convolution,
after choosing a consistent ordering.

Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019
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How to define the local ordering: Spiral Convolutions

How can we make sure that the ordering is also consistent across
di↵erent vertices of the graph?

Harder problem for general graphs. For meshes, the ambiguity falls
again into di↵erent rotations.

Spiral scan:

Lim et al., ECCVW 2018, Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019



Ordering-Based Graph Convolutions

F 0(x) = ⇠

0

@
|N (x)|X

k=1

F (xk)Gk

1

A , Gk 2 Rdin⇥dout

Spatially-localized filters

O(1) parameters per layer

All operations are local ) O(n) computational complexity

Anisotropic Kernels

Lightweight, fast & easier to optimise
Similar to traditional convolutions ) practices for traditional
CNNs can be directly transferred (e.g. dilated convolutions)
Connectivity and geometry aware
Ordering needs to be engineered

Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019
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Representation Learning for 3D meshes of fixed topology

Autoencoder architecture

Spiral Convolutions

Hierarchical structure

Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019



Vector space Arithmetics

Interpolation

Analogies

Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019



3D shape Generation

Wasserstein GAN architecture

Bouritsas⇤, Bokhnyak⇤ et al., ICCV 2019, ICLRW 2019



Shape Completion (fixed toplogy)

Litany et al., CVPR 2018



Facial expression Generation

Ranjan et al., ECCV 2018



3D Hand and Human Body Reconstruction

Kulon et al., BMVC 2019, Kolotouros et. al, CVPR 2019



Arbitrary topology 3D shape generation: Relatively
unexplored

Range scan to 3D mesh (only up to 100 vertices)

Zero genus shape generation

Dai and Nießner, CVPR 2019, Smith et al., ICML 2019



Can we draw insipration from methods on arbitrary
Graphs?

Molecule generation

Topology Generation

Simonovsky and Komodakis, ICANN 2019, De Cao and Kipf, ICMLW 2018, You et al.,
ICML 2018



Summary: Deep Learning on 3D Data

Credit: Michael Bronstein, Charles R. Qi, Jeong J. Park

Image-based Volumetric Point Cloud Mesh-based
Signed 

distance- 
based

✅  Simple

✅  Good results

⛔  Not geometric

⛔  No invariance

✅  Simple

⛔  Coarse

⛔  Memory

⛔  No invariance

✅  Efficient

✅  Simple

✅  Accurate

⛔  No invariance

✅  Efficient

✅  Simple

✅  Accurate

⛔  No invariance

✅  Efficient

✅  Accurate

✅  Deform. 
invariant

⛔  Custom layers



Deep Learning Frameworks 
Datasets 

Additional 3D Deep Learning tutorials 



• Tensorflow (Google)


• PyTorch (Facebook), Torch


• Caffe (Berkeley) and Caffe v2 (merged with PyTorch)


• CNTK (Microsoft) 


• MatConvNet (Oxford)


• Keras (high level Python API)


• Theano (University of Montreal)


• Matlab

Deep Learning Frameworks



Deep Learning Frameworks

https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668

https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668


SGP 2019: Keynotes



Geometric Deep Learning 

SGP Graduate School 2017, 2018

http://school.geometryprocessing.org/

Related courses

http://school.geometryprocessing.org/


Learning Generative Models of 3D Structures 

Eurographics 2019 Tutorial

https://3dstructgen.github.io/

Related courses



CreativeAI: 
Deep Learning for Graphics 

Siggraph 2019, Eurographics 2018, 2019, Siggraph Asia 2018

http://geometry.cs.ucl.ac.uk/creativeai/


http://geometry.cs.ucl.ac.uk/dl4g/

Related courses

http://geometry.cs.ucl.ac.uk/creativeai/


Geometric Deep Learning on 
Graphs and Manifolds  

NIPS 2017 Tutorial 

http://www.geometricdeeplearning.com

Related courses

http://www.geometricdeeplearning.com


Datasets for 3D Deep Learning

ModelNet (2015)

ModelNet10: 4899 models, 10 categories 

ModelNet40: 12311 models, 40 categories

ShapeNet (2015) 
3Million+ models and 4K+ categories  
ShapeNetCore: 51300 models, 55 categories

PartNet (2019)
A Large-scale Benchmark for Fine-grained and 
Hierarchical Part-level 3D Object Understanding



Datasets for 3D Deep Learning

ABC (2018) 
A Big CAD Model Dataset   
For Geometric Deep Learning

TraceParts (2019) 

3D dataset of mechanical 
components

• 3D Machine Learning Github repository


• https://github.com/timzhang642/3D-Machine-Learning

https://github.com/timzhang642/3D-Machine-Learning


Datasets for 3D Deep Learning

SCAPE (Stanford) 
- 71 human meshes 
- same person, different poses 
- 12.5K vertices

FAUST (MPI) 
- 300 human meshes 
- 10 objects in 30 poses 
- ~7K vertices

TOSCA (Technion) 
- 80 objects, 9 categories 
- human and animal shapes 
- 3K-50K vertices



Datasets for 3D Deep Learning

Large Scale 3D Morphable Models 

Booth et al., IJCV 2017



Datasets for scene understanding

ScanComplete: Large-Scale Scene Completion and
Semantic Segmentation for 3D Scans

Angela Dai1,3,5 Daniel Ritchie2 Martin Bokeloh3 Scott Reed4 Jürgen Sturm3 Matthias Nießner5
1Stanford University 2Brown University 3Google 4DeepMind 5Technical University of Munich

3D scans of indoor environments suffer from sensor occlusions, leaving 3D reconstructions with highly incomplete 3D
geometry (left). We propose a novel data-driven approach based on fully-convolutional neural networks that transforms
incomplete signed distance functions (SDFs) into complete meshes at unprecedented spatial extents (middle). In addition
to scene completion, our approach infers semantic class labels even for previously missing geometry (right). Our approach
outperforms existing approaches both in terms of completion and semantic labeling accuracy by a significant margin.

Abstract

We introduce ScanComplete, a novel data-driven ap-

proach for taking an incomplete 3D scan of a scene as input

and predicting a complete 3D model along with per-voxel

semantic labels. The key contribution of our method is its

ability to handle large scenes with varying spatial extent,

managing the cubic growth in data size as scene size in-

creases. To this end, we devise a fully-convolutional gen-

erative 3D CNN model whose filter kernels are invariant to

the overall scene size. The model can be trained on scene

subvolumes but deployed on arbitrarily large scenes at test

time. In addition, we propose a coarse-to-fine inference

strategy in order to produce high-resolution output while

also leveraging large input context sizes. In an extensive

series of experiments, we carefully evaluate different model

design choices, considering both deterministic and proba-

bilistic models for completion and semantic inference. Our

results show that we outperform other methods not only in

the size of the environments handled and processing effi-

ciency, but also with regard to completion quality and se-

mantic segmentation performance by a significant margin.

1. Introduction

With the wide availability of commodity RGB-D sen-
sors such as Microsoft Kinect, Intel RealSense, and Google
Tango, 3D reconstruction of indoor spaces has gained mo-
mentum [22, 11, 24, 42, 6]. 3D reconstructions can help cre-
ate content for graphics applications, and virtual and aug-
mented reality applications rely on obtaining high-quality
3D models from the surrounding environments. Although
significant progress has been made in tracking accuracy and
efficient data structures for scanning large spaces, the result-
ing reconstructed 3D model quality remains unsatisfactory.

One fundamental limitation in quality is that, in general,
one can only obtain partial and incomplete reconstructions
of a given scene, as scans suffer from occlusions and the
physical limitations of range sensors. In practice, even with
careful scanning by human experts, it is virtually impos-
sible to scan a room without holes in the reconstruction.
Holes are both aesthetically unpleasing and can lead to se-
vere problems in downstream processing, such as 3D print-
ing or scene editing, as it is unclear whether certain areas of
the scan represent free space or occupied space. Traditional
approaches, such as Laplacian hole filling [36, 21, 44] or
Poisson Surface reconstruction [13, 14] can fill small holes.
However, completing high-level scene geometry, such as
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Dai et al. [CVPR 2017], Dai et al. [CVPR 2018]

ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes

Angela Dai1 Angel X. Chang2 Manolis Savva2 Maciej Halber2 Thomas Funkhouser2 Matthias Nießner1,3
1Stanford University 2Princeton University 3Technical University of Munich

www.scan-net.org

Abstract

A key requirement for leveraging supervised deep learn-
ing methods is the availability of large, labeled datasets.
Unfortunately, in the context of RGB-D scene understand-
ing, very little data is available – current datasets cover a
small range of scene views and have limited semantic an-
notations. To address this issue, we introduce ScanNet, an
RGB-D video dataset containing 2.5M views in 1513 scenes
annotated with 3D camera poses, surface reconstructions,
and semantic segmentations. To collect this data, we de-
signed an easy-to-use and scalable RGB-D capture system
that includes automated surface reconstruction and crowd-
sourced semantic annotation. We show that using this data
helps achieve state-of-the-art performance on several 3D
scene understanding tasks, including 3D object classifica-
tion, semantic voxel labeling, and CAD model retrieval.

1. Introduction
Since the introduction of commodity RGB-D sensors,

such as the Microsoft Kinect, the field of 3D geometry cap-
ture has gained significant attention and opened up a wide
range of new applications. Although there has been sig-
nificant effort on 3D reconstruction algorithms, general 3D
scene understanding with RGB-D data has only very re-
cently started to become popular. Research along seman-
tic understanding is also heavily facilitated by the rapid
progress of modern machine learning methods, such as neu-
ral models. One key to successfully applying theses ap-
proaches is the availability of large, labeled datasets. While
much effort has been made on 2D datasets [17, 44, 47],
where images can be downloaded from the web and directly
annotated, the situation for 3D data is more challenging.
Thus, many of the current RGB-D datasets [74, 92, 77, 32]
are orders of magnitude smaller than their 2D counterparts.
Typically, 3D deep learning methods use synthetic data to
mitigate this lack of real-world data [91, 6].

One of the reasons that current 3D datasets are small is
because their capture requires much more effort, and effi-

Figure 1. Example reconstructed spaces in ScanNet annotated with
instance-level object category labels through our crowdsourced
annotation framework.

ciently providing (dense) annotations in 3D is non-trivial.
Thus, existing work on 3D datasets often fall back to poly-
gon or bounding box annotations on 2.5D RGB-D images
[74, 92, 77], rather than directly annotating in 3D. In the
latter case, labels are added manually by expert users (typi-
cally by the paper authors) [32, 71] which limits their over-
all size and scalability.

In this paper, we introduce ScanNet, a dataset of richly-
annotated RGB-D scans of real-world environments con-
taining 2.5M RGB-D images in 1513 scans acquired in
707 distinct spaces. The sheer magnitude of this dataset
is larger than any other [58, 81, 92, 75, 3, 71, 32]. However,
what makes it particularly valuable for research in scene
understanding is its annotation with estimated calibration
parameters, camera poses, 3D surface reconstructions, tex-
tured meshes, dense object-level semantic segmentations,
and aligned CAD models (see Fig. 2). The semantic seg-
mentations are more than an order of magnitude larger than
any previous RGB-D dataset.

In the collection of this dataset, we have considered two
main research questions: 1) how can we design a frame-
work that allows many people to collect and annotate large
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