Maps between Shapes

(shape correspondence / matching)




Outline

e Introduction

* Problem formulation

 Applications
« Semi-automatic Matching

* Fully automatic methods

 Functional maps

* Fuzzy maps



Shape Correspondence

Given two shapes M; and M,, compute a semantic map ¢1,: M; = M,:

Shapes from FAUST dataset, Bogo et al.



Categories (full correspo:@dence)

nﬂf',;,

Rigid ~ Non Rigid, Non Rigid &
Shapes from Shrec’'07 & FAUST datasets (nearl)/) Isometric Non Isometric:



Categories (partial correspondence)

e o

Rigid Non Rigid, Non Rigid &
(nearly) Isometric Non Isometric

Shapes from partial TOSCA, Rodola et al. 5



Discrete Shape Correspondence

How are discrete maps between shapes represented?

Vertex-to-vertex maps: list of target vertex indices (n, integers)

Combinatorial L




Discrete Shape Correspondence

How are discrete maps between shapes represented?

Precise maps: target face index and three barycentric coordinates for each

source vertex

Continuous U




Non Trivial Shape Correspondence

How should the correspondence look like?
Fingers, palm — straightforward

Where should we map the bottom part?

Solution #1: the bottom part has ho match

Solution #2: the bottom part should be

mapped smoothly
What do we need it for?



Application — Texture Transfer

From: “Weighted Averages on Surfaces”, Panozzo et al. 2013



Joint Remeshing
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Ezuz et al. 2019

From



Joint Remeshing

From: Ezuz et al. 2019
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Joint Remeshing

From: Ezuz et al. 2019
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Application — Shape Interpolation

222K

From: “Time-Discrete Geodesics in the Space of Shells”, Heeren et al. 2012
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More Applications

 Shape alignment for application of DNNs on 3D
» Deformation transfer

* Joint remeshing

» Statistical shape analysis

» Registration

* Object recognition



Non Trivial Shape Correspondence

What do we need it for? Interpolation:

With partial

correspondence
Interpolation: Behrend Heeren
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Non Trivial Shape Correspondence

What do we need it for? Interpolation:

With full

correspondence

Interpolation: Behrend Heeren
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Non Trivial Shape Correspondence

What do we need it for? Texture transfer:

The desired correspondence is application dependent
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Evaluation

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph
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Evaluation

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph
map #1
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% correspondences




Conformal Distortion

A conformal map preserves angles

Affine
transformation
/ B

01
)
Source

Target
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Evaluation

How can we evaluate a given map quality?

Measure conformal distortion (angle preservation)

Target Texture
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Qualitative Evaluation

Visualization using texture transfer:

vertex-to-vertex

Target Texture Locally and globally Globally accurate,
(projection) accurate map locally distorted map



Semi-automatic Matching

Output

23



Parameterization based

Motivation: the Dirichlet energy measures smoothness

1
E(¢12) — E J|d§b12|2
My

A map is harmonic if it is a critical point of the Dirichlet energy



Discrete Dirichlet Energy
Ep(¢12) = 2 Wuvdl%/lz (P12(w), Pp12(v))

(u,v)EE4

M,

RVAN N
SO
@

e, 12




Discrete Dirichlet Energy
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Discrete Dirichlet Energy
Ep(¢12) = 2 Wuvdl%/lz (P12(w), Pp12(v))

(u,v)EE4

Gradient of the Dirichlet energy:
« Computationally expensive (geodesics on target)

« Well defined only for hyperbolic target



Parameterization-based Correspondence

Motivation: for some target domains the problem is much simpler

28



Parameterization-based Correspondence

Common domain examples:
* Plane
* Sphere

 Uniformization theorem: any genus
zero surface can be mapped
conformally to the unit sphere

 Orbifolds [Aigerman et al ]
* Spherical
* Hyperbolic

D,

) ) &

>

|

(D2

i (I)zogO(DllJ

Image from: “Mobius Voting For

Surface Correspondence”, Lipman &

Funkhouser, SIGGRAPH 2009
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Parameterization-based Correspondence

Aigerman & Lipman, “Hyperbolic Orbifold Tutte Embeddings”:
Use a hyperbolic orbifold as the common domain

Hyperbolic orbifold
illustration

Example result

Images from: “"Hyperbolic Orbifold Tutte Embeddings”, Aigerman & Lipman, SIGGRAPH Asia 2016 30



Parameterization-based Correspondence

Hyperbolic orbifold common domain:

+ Gradient of the Dirichlet energy is well defined

+ Bijectivity is well defined and guaranteed (continuous setting)
+ Distances can be computed analytically

+ Not limited to vertex-to-vertex output

However:
» Continuous guarantees do not always hold in discrete cases

« Composition of maps might not be with minimal distortion
* Topological constraints (same genus)



Discrete Dirichlet Energy
Ep(¢12) = 2 Wuvdl%/lz (P12(w), Pp12(v))

(u,v)EE4
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Discrete Dirichlet Energy
Eguc(¢12) — 2 Wy ll 12 (1) — ¢12(V)H2
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Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

34




Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row: P1,V5

)i k
E vj_
i1-0.1—0.2—0/= [, -
: [
P12 VZ = -

V, € R"2*3 js a matrix with vertex coordinates of M,
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Discretization — Dirichlet Energy

If we replace the geodesic distances by Euclidean distances, the
discrete Dirichlet energy is:

Eguc(¢12) = z Wy |12 (1) — ¢12(V)H2

(u,v)EE4

— = HP12V2HI%I/1



Discrete Dirichlet Energy

We use a high dimensional embedding where Euclidean distances
approximate geodesic distances (MDS)

XZ E [an X8

Then the discrete Dirichlet energy is approximated by:

Ep (P12) — ”P12X2 le/lfl

From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Minimizing the Dirichlet Energy

optimize Ep

Initial map (Id)

From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019 38



Reversibility

« We add a reversibility term to prevent the map from shrinking

M,

Er(Pi, Py1) = |Py1P1o Xy — XI5y, + 1P1oPan Xy — Xo iy,

39



Reversible Harmonic Energy

“Reversible Harmonic Maps between Discrete Surfcaes”, Ezuz et al. 2019:
Combine the Dirichlet energy and the reversibility term:

E(P12'P21) — aED (P12) + aED (P21) + (1 o a)ER (12'P21)

b \

The parameter a controls the trade off
Optimization: half quadratic splitting
and alternating minimization

From: "Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Reversible Harmonic Energy

+ Distortion is minimized directly (results have low conformal distortion)
+ Bijectivity is promoted using reversibility

+ No topological constraints

+ Not limited to vertex-to-vertex output

However:
Intrinsic methods do not
align extrinsic features

From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019




Elastic Energy

The discrete thin-shell energy consists of two terms:
« Membrane energy: £y,
« Bending energy: Eg

Eciastic = aky +nEp

Frequently used for shape deformation, tricky

to optimize for shape correspondence Image from: “Interactive Surface
Modeling using Modal Analysis”,

Hilderbrandt et al., SIGGRAPH 2012
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Shape Correspondence and Deformation

»
f &
-

Correspondence is a constrained deformation 4




Membrane Energy

Sum of area distortion per triangle: Triangle t

E, = z a, Wit b |
tefaces

W (t,t) is a non linear functional

that is minimal only for rigid transformations

Triangle t



Bending Energy

The bending energy compares dihedral angles:

A~ N2 Ly
EB(X, Y) — Z We(ee R 66) ty
eeedges
-/

A

Aligns mean curvature 0,



Elastic Matching

o B = 3 -
Target HOT +elastic Intttal Map
HOT: "Hyperbolic orbifold tutte embeddings”, Aigerman & Lipman, SIGG 'Fl)a 2016

Elastic: “Elastic Correspondence between Triangle Meshes”, Ezuz et al., Eurographics 2019
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Elastic Matching

Elastic: “Elastic Correspondence between Triangle Meshes”, Ezuz et al., Eurographics 2019

47



s the problem solved?

Nice results of semi-automatic methods, but:
* Full matching, what about partiality?

 What if we do not have landmarks?

Next: fully automatic correspondence



Descriptor Matching

Heat Kernel Signature (HKS)

h ¢

-

From: Sun et al. "A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion” 2009
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Descriptor Matching

Wave Kernel Signature (WKS)

From: Aubry et al. “The Wave Kernel
Signature: A Quantum Mechanical
Approach to Shape Analysis” 2011
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Descriptor Matching

What about non isometric shapes?

Various methods use deep learning
to learn consistent descriptors

Image from: “Geodesic Convolutional Neural
Networks on Riemannian Manifolds”, Masci et al.,
3DRR 2015

51



Descriptor Matching

Say we computed matching descriptors, how do we compute
correspondence?

» "“The Wave Kernel Signature: A Quantum Mechanical Approach to
Shape Analysis”, Aubry et al. 2011: an iterative approach based on
nearest neighbors in descriptor space

* "Efficient Deformable Shape Correspondence via Kernel Matching”,
Vestner et al., 3DV 2017: global combinatorial approach



Functional Maps

Function correspondence is linear

£ eRM f, € R™ $12(p)

\ /
Pl2 E Rnl XMNo

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012

M,

M
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Functional Maps

The eigenfunctions of the Laplace-Beltrami operator form the basis:

P2

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Maps — Reduced Basis

The reduced functional map is C;,

fi — Ci2 f2

kq Ky XKy K,

e | \

Coefficients of Change of basis Coefficients of
basis @, matrix basis ©,

f1

95

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation
Descriptor correspondence is easy to formulate:
argming,, 1f1 = Ci2foll?

f1 € Rt descriptor on M, (reduced basis coefficients)

f> € R*2 descriptor on M, (reduced basis coefficients)

f1

56

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation

Laplacian commutativity promotes isometries:

argming |C128, — A Cop]|%

A, € RFrXF1 A, € RF2Xk2 | gplace Beltrami operators, projected on

the reduced bases ®,, ®,

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation

Laplacian commutativity promotes isometries:

argming 1C120; — A1 Cyy |2

‘Interactive Curve Constrained Functional Maps”,
Gehre et al., SGP 2018:
Curve constraints + Laplacian commutativity

Works well for non isometric shapes as well

Image from: “Interactive Curve Constrained

Functional Maps”, Gehre et al., SGP 2018
58



Functional Maps & Partiality

“Partial Functional Correspondence”, Rodola et al., SGP 2017

The diagonal angle depends on the area ratio

Image from: “Partial Functional Correspondence”, Rodola et al., SGP 2017
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Functional Map Computation

We computed a functional map, what's next?

 For some applications we can use the functional map as is

» For example, texture transfer just requires transferring functions

 For some applications we must convert the functional map to a

pointwise map



Functional Map to Pointwise Map

A possible simple approach [Ovsjanikov et al. 2012]:

 For each vertex of M,
* Map an indicator function at this vertex to M,

 Find the vertex of M; where the value of the mapped function is
maximal

project




Functional Map to Pointwise Map

A better approach [Ovsjanikov et al. 2012]:
Compute indicator functions on both shapes, compare

'@ ¥- ﬁz
compare | . prOJeCt
A o« K

62



Functional Map to Pointwise Map

Finding nearest indicator function generates vertex-to-vertex output

Target Vertex-to-vertex
From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017 63

M,



Functional Map to Pointwise Map

Finding nearest indicator function generates vertex-to-vertex output

“Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017:

Instead of nearest neighbors among vertices only, find nearest

neighbors on faces N\ ,ﬁ\a:j | .
M > H Linear ;ombma’uon
______j: I'| _» of indicator

functions at vertices

"

"'\.xx ) "y B e
M“"M ‘ .
L/ |
k ‘. I| 4\
H“"hl h '|II
‘H\x "'...d-.#-..-- III'. 1 L | Il\

M1 1\42 64




Functional Map to Pointwise Map

An algebraic approach:

2
- t
are min HC — P, PP
gPlzeS 12 1129¥2 .

S = {functional maps that uniguely define pointwise maps}

Difficult to solve, usually underconstrained

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

We add a regularizer:

Py, = argggiens HC12 — (DIPHCDZHIZ: + R(P;,)

Should guarantee:
 Unique global minimizer
« Efficient optimization
« Maps with “‘good” properties

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

We add a regularizer:

2
P;, = argggiens ” Ci2 — (DIP”(DZ,HF + R(P12?

Constrains the | Shiould constrain the
projection of Py, ®, projection of P;,®,
Should guarantee: on &, an the orthogonal

* Unigue global minimizer complement of @,

« Efficient optimization
« Maps with “‘good” properties

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

We add a regularizer:

Pi, = arg min |c.z — @1P;,0, Hi + R(Pry)

Should constrain the
projection of P;,®,

Should gual’aﬂteei on the Orthogonal
« Unique global minimizer complement of @,
+ Efficient optimization As small as possible

 Maps with “good” properties

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

Regularize to favor smoother maps: P;,®, € span(d;)

(1d - CD}rCDI) Py, ®, 12\4

2
Pi; = arg min lcys - cInIPlZcDZHF +

, o Similarity term Smoothness term
* Unigue minimizer

e Efficient minimization

 Pointwise map does not induce spurious high frequencies

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

Useful even for pointwise maps!

Given a noisy pointwise map:

 Convert it to a functional map (project on reduced
« Removes high frequencies

» Convert back to a pointwise map

From: “Deblurring and Denoising of Maps between Shapes”, 1\ 4
Ezuz & Ben-Chen, SGP 2017 (lCSKM) ”denO|S|ng" 70



Functional Map Summary

Functional map computation is efficient, but relation to discrete pointwise maps is
not completely clear

What subset of functional maps actually represents pointwise maps?



Functional Map Summary

“Informative Descriptor Preservation via Commutativity for Shape Matching”,

Nogneng & Ovsjanikov, Eurographics 2017:

A functional map corresponds to a pointwise map iff it preserves pointwise products:

Cf Q@ Ch=C(f Qh)

Nogneng & Ovsjanikov used soft commutativity constraints

Can we formulate hard constraints for a functional map to correspond to pointwise?



Soft (Fuzzy) Maps

Compute the probability that a pair of points correspond

M,, probability to  M,, probability to
be matched to p, be matched to g,

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016
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Soft (Fuzzy) Maps

“Exploring Collections of 3D Models using Fuzzy Correspondences”, Kim et al,
SIGGRAPH 2012:

(a) User-specified
regions of interest (b) Most similar exploration results
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Soft (Fuzzy) Maps

Set of possible fuzzy maps:

M (pyg, ) = {F € Rnlxnz Fu, = and il = 1T}

| 1
n1<— [(py) )( > (—u —)< C(p2) )nl
| |

<—n2—>

u, € R™", u, € R™2 vertex areas

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016 -



Matric Alignment

F'emMm

. 2
Gw(r,n',D*) = arg n}mZijkl(Dilj — D%l) i L

Compare distances,
Use matching
probability as weights

do

My

From: Solomon et al. "Entropic Metric Alignment for Correspondence Problems” 2016
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Soft Map Entropy

H(D) = = ) Ty In(Ty)
ik
Small entropy — I’ is sparse (close to a permutation)

Fuzziness — faster convergence

arg 1223% GW(T,D*,D?) — aH(T)

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016



Parameter Selection

From: Solomon et al. "Entropic Metric Alignment for Correspondence Problems” 2016



Matric Alignment

Mesh-point cloud Mesh-graph
correspondence correspondence

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016



Conclusion

* There are MANY different approaches to compute

correspondence

 The discretization is crucial

e Continuous vs. combinatorial
* Output accuracy

* Intermediate discretizations (e.g. functional maps) are useful



Conclusion

* There are MANY different approaches to compute

correspondence

* More categories:
* Volumetric correspondence
* Partial correspondence

* Machine learning methods



Thank you!

Questions?
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