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Shape Correspondence

3

𝑝𝑝

𝑀𝑀1

𝜙𝜙12(𝑝𝑝)

𝑀𝑀2

Given two shapes 𝑀𝑀1 and 𝑀𝑀2, compute a semantic map 𝜙𝜙12:𝑀𝑀1 → 𝑀𝑀2:

Shapes from FAUST dataset, Bogo et al.



Categories (full correspondence)
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Non Rigid,
(nearly) Isometric

Rigid Non Rigid & 
Non IsometricShapes from Shrec’07 & FAUST datasets



Categories (partial correspondence)
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Non Rigid,
(nearly) Isometric

Rigid Non Rigid & 
Non Isometric

Shapes from partial TOSCA, Rodola et al.



Discrete Shape Correspondence
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How are discrete maps between shapes represented?

Vertex-to-vertex maps: list of target vertex indices (𝑛𝑛1 integers)

𝑖𝑖

𝑀𝑀1 𝑀𝑀2

𝑗𝑗Combinatorial



Discrete Shape Correspondence
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How are discrete maps between shapes represented?

Precise maps: target face index and three barycentric coordinates for each 
source vertex

𝑀𝑀1 𝑀𝑀2

𝑗𝑗

𝑘𝑘
𝑙𝑙

𝑖𝑖Continuous



Non Trivial Shape Correspondence

8

How should the correspondence look like?

Fingers, palm – straightforward

Where should we map the bottom part?

Solution #1: the bottom part has no match

Solution #2: the bottom part should be

mapped smoothly

What do we need it for?

𝑀𝑀1
𝑀𝑀2



Application – Texture Transfer

9
From: “Weighted Averages on Surfaces”, Panozzo et al. 2013



Joint Remeshing

10From: Ezuz et al. 2019



11From: Ezuz et al. 2019

Joint Remeshing



12From: Ezuz et al. 2019

Joint Remeshing



Application – Shape Interpolation
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From: “Time-Discrete Geodesics in the Space of Shells”, Heeren et al. 2012



More Applications

14

• Shape alignment for application of DNNs on 3D

• Deformation transfer

• Joint remeshing

• Statistical shape analysis

• Registration

• Object recognition

• …



Non Trivial Shape Correspondence
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What do we need it for? Interpolation:

With partial 
correspondence

𝑀𝑀1
𝑀𝑀2

Interpolation: Behrend Heeren



Non Trivial Shape Correspondence
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What do we need it for? Interpolation:

With full 
correspondence

𝑀𝑀1
𝑀𝑀2

Interpolation: Behrend Heeren



Non Trivial Shape Correspondence
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What do we need it for? Texture transfer:

The desired correspondence is application dependent



Evaluation

18

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph

𝑝𝑝

𝑀𝑀1 𝑀𝑀2

Computed 
mapping of 𝑝𝑝

Ground truth 
mapping of 𝒑𝒑

Geodesic error
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Evaluation

19

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph
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Target Texture Which one is map #1?

map #1map #2



Conformal Distortion

A conformal map preserves angles

20

Affine 
transformation

𝜎𝜎1
𝜎𝜎2

Source Target



Evaluation
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How can we evaluate a given map quality?

Measure conformal distortion (angle preservation)

map #2

Conformal Distortion
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Qualitative Evaluation

22

Visualization using texture transfer:

Target Texture 
(projection)

Locally and globally 
accurate map

Globally accurate, 
locally distorted map

vertex-to-vertex



Semi-automatic Matching
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Input Output

𝑀𝑀1 𝑀𝑀2 𝑀𝑀1 𝑀𝑀2



Parameterization based

Motivation: the Dirichlet energy measures smoothness

𝐸𝐸 𝜙𝜙12 =
1
2
�
𝑀𝑀1

𝑑𝑑𝜙𝜙12 2

A map is harmonic if it is a critical point of the Dirichlet energy

24



𝐸𝐸𝐷𝐷 𝜙𝜙12 = �
𝑢𝑢,𝑣𝑣 ∈Ε1

𝑤𝑤𝑢𝑢𝑣𝑣𝑑𝑑𝑀𝑀2
2 𝜙𝜙12 𝑢𝑢 ,𝜙𝜙12(𝑣𝑣)

Discrete Dirichlet Energy

25

𝑢𝑢

𝑀𝑀1 𝑀𝑀2
𝑣𝑣

𝜙𝜙12(𝑣𝑣)

𝜙𝜙12(𝑢𝑢)



The gradient of a matching energy:

Discrete Dirichlet Energy

26

𝑀𝑀1 𝑀𝑀2



Gradient of the Dirichlet energy:

• Computationally expensive (geodesics on target)

• Well defined only for hyperbolic target

𝐸𝐸𝐷𝐷 𝜙𝜙12 = �
𝑢𝑢,𝑣𝑣 ∈Ε1

𝑤𝑤𝑢𝑢𝑣𝑣𝑑𝑑𝑀𝑀2
2 𝜙𝜙12 𝑢𝑢 ,𝜙𝜙12(𝑣𝑣)

Discrete Dirichlet Energy



Parameterization-based Correspondence

Motivation: for some target domains the problem is much simpler

28

𝜙𝜙1 𝜙𝜙2

𝜙𝜙2−1 ∘ 𝜙𝜙1



Parameterization-based Correspondence

Common domain examples:
• Plane
• Sphere

• Uniformization theorem: any genus 
zero surface can be mapped 
conformally to the unit sphere

• Orbifolds [Aigerman et al.]
• Spherical
• Hyperbolic

29

Image from: “Mobius Voting For 
Surface Correspondence”, Lipman & 

Funkhouser, SIGGRAPH 2009



Parameterization-based Correspondence

Aigerman & Lipman, “Hyperbolic Orbifold Tutte Embeddings”:
Use a hyperbolic orbifold as the common domain

30Images from: “Hyperbolic Orbifold Tutte Embeddings”, Aigerman & Lipman, SIGGRAPH Asia 2016 

Hyperbolic orbifold
illustration Example result



Parameterization-based Correspondence

Hyperbolic orbifold common domain:
+ Gradient of the Dirichlet energy is well defined
+ Bijectivity is well defined and guaranteed (continuous setting)
+ Distances can be computed analytically
+ Not limited to vertex-to-vertex output

However:
• Continuous guarantees do not always hold in discrete cases
• Composition of maps might not be with minimal distortion
• Topological constraints (same genus)

31



𝐸𝐸𝐷𝐷 𝜙𝜙12 = �
𝑢𝑢,𝑣𝑣 ∈Ε1

𝑤𝑤𝑢𝑢𝑣𝑣𝑑𝑑𝑀𝑀2
2 𝜙𝜙12 𝑢𝑢 ,𝜙𝜙12(𝑣𝑣)

Discrete Dirichlet Energy

32

𝑢𝑢

𝑀𝑀1 𝑀𝑀2
𝑣𝑣

𝜙𝜙12(𝑣𝑣)

𝜙𝜙12(𝑢𝑢)



𝐸𝐸𝐷𝐷𝐸𝐸𝑢𝑢𝐸𝐸 𝜙𝜙12 = �
𝑢𝑢,𝑣𝑣 ∈Ε1

𝑤𝑤𝑢𝑢𝑣𝑣 𝜙𝜙12 𝑢𝑢 − 𝜙𝜙12 𝑣𝑣 2

Discrete Dirichlet Energy
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𝑢𝑢

𝑀𝑀1 𝑀𝑀2
𝑣𝑣

𝜙𝜙12(𝑣𝑣)

𝜙𝜙12(𝑢𝑢)



Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

34

𝑖𝑖

𝑀𝑀1 𝑀𝑀2

row 𝑖𝑖

𝑗𝑗 𝑘𝑘 𝑙𝑙
𝑗𝑗

𝑘𝑘
𝑙𝑙

𝑃𝑃12 =
⋮

⋮
0.1 0.2 0.7



Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

𝑉𝑉2 ∈ ℝ𝑛𝑛2×3 is a matrix with vertex coordinates of 𝑀𝑀2

35

𝑖𝑖

𝑀𝑀1 𝑀𝑀2

𝑗𝑗 𝑘𝑘 𝑙𝑙

𝒗𝒗𝒋𝒋

𝒗𝒗𝒌𝒌 𝒗𝒗𝒍𝒍

⋮

⋮
0.1 0.2 0.7

𝑣𝑣𝑗𝑗
𝑣𝑣𝑘𝑘
𝑣𝑣𝑙𝑙

𝑖𝑖

𝑃𝑃12 𝑉𝑉2

𝑖𝑖𝑡𝑡ℎ row of 
𝑃𝑃12𝑉𝑉2



Discretization – Dirichlet Energy

If we replace the geodesic distances by Euclidean distances, the 
discrete Dirichlet energy is:

𝐸𝐸𝐷𝐷𝐸𝐸𝑢𝑢𝐸𝐸 𝜙𝜙12 = �
𝑢𝑢,𝑣𝑣 ∈Ε1

𝑤𝑤𝑢𝑢𝑣𝑣 𝜙𝜙12 𝑢𝑢 − 𝜙𝜙12 𝑣𝑣 2

= ⋯ = 𝑃𝑃12𝑉𝑉2 𝑊𝑊1
2



Discrete Dirichlet Energy

We use a high dimensional embedding where Euclidean distances 
approximate geodesic distances (MDS)

𝑋𝑋2 ∈ ℝ𝑛𝑛2×8

Then the discrete Dirichlet energy is approximated by:

𝐸𝐸𝐷𝐷 𝑃𝑃12 = 𝑃𝑃12𝑋𝑋2 𝑊𝑊1
2

37
From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Minimizing the Dirichlet Energy

𝑀𝑀1

Initial map (Id)

𝑀𝑀2

optimize 𝐸𝐸𝐷𝐷

38From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Reversibility

• We add a reversibility term to prevent the map from shrinking

𝜙𝜙12

𝜙𝜙21
𝑀𝑀1 𝑀𝑀2

39
𝐸𝐸𝑅𝑅 𝑃𝑃12,𝑃𝑃21 = 𝑃𝑃21𝑃𝑃12𝑋𝑋2 − 𝑋𝑋2 𝑀𝑀2

2 + 𝑃𝑃12𝑃𝑃21𝑋𝑋1 − 𝑋𝑋1 𝑀𝑀1
2



Reversible Harmonic Energy

40

“Reversible Harmonic Maps between Discrete Surfcaes”, Ezuz et al. 2019: 
Combine the Dirichlet energy and the reversibility term:

𝐸𝐸 𝑃𝑃12,𝑃𝑃21 = 𝛼𝛼𝐸𝐸𝐷𝐷 𝑃𝑃12 + 𝛼𝛼𝐸𝐸𝐷𝐷 𝑃𝑃21 + 1 − 𝛼𝛼 𝐸𝐸𝑅𝑅(𝑃𝑃12,𝑃𝑃21)

The parameter 𝛼𝛼 controls the trade off
Optimization: half quadratic splitting 

and alternating minimization

From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Reversible Harmonic Energy

+ Distortion is minimized directly (results have low conformal distortion)
+ Bijectivity is promoted using reversibility
+ No topological constraints
+ Not limited to vertex-to-vertex output

However: 
Intrinsic methods do not
align extrinsic features

41
From: “Reversible Harmonic Maps between Discrete Surfaces”, Ezuz et al., TOG 2019



Elastic Energy

42

The discrete thin-shell energy consists of two terms: 

• Membrane energy: 𝐸𝐸𝑀𝑀

• Bending energy: 𝐸𝐸𝐵𝐵

𝐸𝐸𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝐸𝐸 = 𝛼𝛼𝐸𝐸𝑀𝑀 + 𝜂𝜂𝐸𝐸𝐵𝐵
Frequently used for shape deformation, tricky

to optimize for shape correspondence Image from: “Interactive Surface 
Modeling using Modal Analysis”, 

Hilderbrandt et al., SIGGRAPH 2012



Shape Correspondence and Deformation

43Correspondence is a constrained deformation



Membrane Energy

44

Sum of area distortion per triangle:

𝐸𝐸𝑀𝑀 = �
𝑡𝑡∈𝑓𝑓𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒

�𝑎𝑎𝑡𝑡𝑊𝑊 𝑡𝑡, �̂�𝑡

𝑊𝑊 𝑡𝑡, �̂�𝑡 is a non linear functional 

that is minimal only for rigid transformations

Triangle 𝑡𝑡

Triangle �̂�𝑡



Bending Energy

45

The bending energy compares dihedral angles:

Aligns mean curvature

𝜃𝜃𝑒𝑒

�̂�𝜃𝑒𝑒

𝑒𝑒

𝑡𝑡2
𝑡𝑡1

𝐸𝐸𝐵𝐵(𝑋𝑋,𝑌𝑌) = �
𝑒𝑒∈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑤𝑤𝑒𝑒 𝜃𝜃𝑒𝑒 − �𝜃𝜃𝑒𝑒
2



Elastic Matching

46

Target HOT+elastic Initial Map 
(HOT)HOT: “Hyperbolic orbifold tutte embeddings”, Aigerman & Lipman, SIGGRAPH Asia 2016

Elastic: “Elastic Correspondence between Triangle Meshes”, Ezuz et al., Eurographics 2019



Elastic Matching

47
Elastic: “Elastic Correspondence between Triangle Meshes”, Ezuz et al., Eurographics 2019



Is the problem solved?

48

Nice results of semi-automatic methods, but:

• Full matching, what about partiality?

• What if we do not have landmarks?

Next: fully automatic correspondence



Heat Kernel Signature (HKS)

49From: Sun et al. “A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion” 2009

Descriptor Matching



Wave Kernel Signature (WKS)

50

From: Aubry et al. “The Wave Kernel 
Signature: A Quantum Mechanical 
Approach to Shape Analysis” 2011

Descriptor Matching



What about non isometric shapes?

Various methods use deep learning 
to learn consistent descriptors

51

Descriptor Matching

Image from: “Geodesic Convolutional Neural 
Networks on Riemannian Manifolds”, Masci et al., 

3DRR 2015



Say we computed matching descriptors, how do we compute 
correspondence?

• “The Wave Kernel Signature: A Quantum Mechanical Approach to 
Shape Analysis”, Aubry et al. 2011: an iterative approach based on 
nearest neighbors in descriptor space

• “Efficient Deformable Shape Correspondence via Kernel Matching”, 
Vestner et al., 3DV 2017: global combinatorial approach

52

Descriptor Matching



Functional Maps

53

𝑝𝑝

𝑀𝑀1

𝜙𝜙12(𝑝𝑝)

𝑀𝑀2

Function correspondence is linear

𝑓𝑓2 ∈ ℝ𝑛𝑛2𝑓𝑓1 ∈ ℝ𝑛𝑛1

𝑃𝑃12 ∈ ℝ𝑛𝑛1×𝑛𝑛2

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Maps

= 𝑎𝑎0 +𝑎𝑎1 +𝑎𝑎2 +⋯

54
𝜙𝜙0 𝜙𝜙2𝜙𝜙1

The eigenfunctions of the Laplace-Beltrami operator form the basis:

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Maps – Reduced Basis

The reduced functional map is 𝐶𝐶12

𝑓𝑓1
𝑘𝑘1

= 𝐶𝐶12
𝑘𝑘1×𝑘𝑘2

𝑓𝑓2
𝑘𝑘2

55

Coefficients of 
basis Φ1

Coefficients of 
basis Φ2

Change of basis 
matrix 𝑓𝑓2𝑓𝑓1

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation

56

𝑓𝑓2𝑓𝑓1

Descriptor correspondence is easy to formulate:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝐶𝐶12 ||𝑓𝑓1 − 𝐶𝐶12𝑓𝑓2||2

𝑓𝑓1 ∈ ℝ𝑘𝑘1 descriptor on 𝑀𝑀1 (reduced basis coefficients)

𝑓𝑓2 ∈ ℝ𝑘𝑘2 descriptor on 𝑀𝑀2 (reduced basis coefficients)

From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation

Laplacian commutativity promotes isometries:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝐶𝐶12 ||𝐶𝐶12Δ2 − Δ1𝐶𝐶12||2

Δ1 ∈ ℝ𝑘𝑘1×𝑘𝑘1 ,Δ2 ∈ ℝ𝑘𝑘2×𝑘𝑘2 Laplace Beltrami operators, projected on 

the reduced bases Φ1,Φ2

57From: “Functional Maps: A Flexible Representation of Maps Between Shapes”, Ovsjanikov et al., SIGGRAPH 2012



Functional Map Computation

58

Laplacian commutativity promotes isometries:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝐶𝐶12 ||𝐶𝐶12Δ2 − Δ1𝐶𝐶12||2

“Interactive Curve Constrained Functional Maps”, 
Gehre et al., SGP 2018: 
Curve constraints + Laplacian commutativity
Works well for non isometric shapes as well

Image from: “Interactive Curve Constrained 
Functional Maps”, Gehre et al., SGP 2018



Functional Maps & Partiality

59

“Partial Functional Correspondence”, Rodolà et al., SGP 2017:

The diagonal angle depends on the area ratio

Image from: “Partial Functional Correspondence”, Rodolà et al., SGP 2017



Functional Map Computation

We computed a functional map, what’s next?

• For some applications we can use the functional map as is 

• For example, texture transfer just requires transferring functions

• For some applications we must convert the functional map to a 

pointwise map

60



Functional Map to Pointwise Map

A possible simple approach [Ovsjanikov et al. 2012]:
• For each vertex of 𝑀𝑀2

• Map an indicator function at this vertex to 𝑀𝑀1
• Find the vertex of 𝑀𝑀1 where the value of the mapped function is 

maximal

61

𝑝𝑝
map project

𝑀𝑀1 𝑀𝑀2 𝑀𝑀2



Functional Map to Pointwise Map

A better approach [Ovsjanikov et al. 2012]:
Compute indicator functions on both shapes, compare

62

𝑝𝑝
compare map project

𝑀𝑀1 𝑀𝑀2𝑀𝑀1 𝑀𝑀2



Functional Map to Pointwise Map

Finding nearest indicator function generates vertex-to-vertex output

63

𝑀𝑀1 𝑀𝑀2 Target Vertex-to-vertex
From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

Finding nearest indicator function generates vertex-to-vertex output

“Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017: 

Instead of nearest neighbors among vertices only, find nearest 

neighbors on faces

64𝑀𝑀1 𝑀𝑀2

𝑗𝑗

𝑘𝑘
𝑙𝑙

𝑖𝑖
Linear combination 

of indicator 
functions at vertices



Functional Map to Pointwise Map

An algebraic approach:

arg min
𝑃𝑃12∈𝑆𝑆

𝐶𝐶12 − Φ1
†𝑃𝑃12Φ2

𝐹𝐹

2

𝑆𝑆 = {functional maps that uniquely define pointwise maps}

Difficult to solve, usually underconstrained

65From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

We add a regularizer:

𝑃𝑃12∗ = arg min
𝑃𝑃12∈𝑆𝑆

𝐶𝐶12 − Φ1
†𝑃𝑃12Φ2

𝐹𝐹

2
+ 𝑅𝑅 𝑃𝑃12

Should guarantee:
• Unique global minimizer

• Efficient optimization

• Maps with “good” properties

66From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

We add a regularizer:

𝑃𝑃12∗ = arg min
𝑃𝑃12∈𝑆𝑆

𝐶𝐶12 − Φ1
†𝑃𝑃12Φ2

𝐹𝐹

2
+ 𝑅𝑅 𝑃𝑃12

Should guarantee:
• Unique global minimizer

• Efficient optimization

• Maps with “good” properties

67

Constrains the 
projection of 𝑃𝑃12Φ2

on Φ1

Should constrain the 
projection of 𝑃𝑃12Φ2
on the orthogonal 
complement of Φ1

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

68

Should constrain the 
projection of 𝑃𝑃12Φ2
on the orthogonal 
complement of Φ1

As small as possible

We add a regularizer:

𝑃𝑃12∗ = arg min
𝑃𝑃12∈𝑆𝑆

𝐶𝐶12 − Φ1
†𝑃𝑃12Φ2

𝐹𝐹

2
+ 𝑅𝑅 𝑃𝑃12

Should guarantee:
• Unique global minimizer

• Efficient optimization

• Maps with “good” properties

From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

Regularize to favor smoother maps:   𝑃𝑃12Φ2 ∈ 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛 Φ1

𝑃𝑃12∗ = arg min
𝑃𝑃12∈𝑆𝑆

𝐶𝐶12 − Φ1
†𝑃𝑃12Φ2

𝐹𝐹

2
+ 𝐼𝐼𝑑𝑑 − Φ1Φ1

† 𝑃𝑃12Φ2
𝑀𝑀1

2

• Unique minimizer

• Efficient minimization

• Pointwise map does not induce spurious high frequencies

Similarity term Smoothness term

69From: “Deblurring and Denoising of Maps between Shapes”, Ezuz & Ben-Chen, SGP 2017



Functional Map to Pointwise Map

Useful even for pointwise maps!

Given a noisy pointwise map:
• Convert it to a functional map (project on reduced bases)

• Removes high frequencies

• Convert back to a pointwise map

70

Target

v-to-v 
(ICSKM)

After 
“denoising”

From: “Deblurring and Denoising of Maps between Shapes”, 
Ezuz & Ben-Chen, SGP 2017



Functional Map Summary

Functional map computation is efficient, but relation to discrete pointwise maps is 

not completely clear

What subset of functional maps actually represents pointwise maps?
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Functional Map Summary

“Informative Descriptor Preservation via Commutativity for Shape Matching”, 

Nogneng & Ovsjanikov, Eurographics 2017: 

A functional map corresponds to a pointwise map iff it preserves pointwise products:

𝐶𝐶𝑓𝑓 ⊗ 𝐶𝐶ℎ = 𝐶𝐶(𝑓𝑓 ⊗ ℎ)

Nogneng & Ovsjanikov used soft commutativity constraints

Can we formulate hard constraints for a functional map to correspond to pointwise?
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Soft (Fuzzy) Maps

Compute the probability that a pair of points correspond
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𝑀𝑀1
M2, probability to 
be matched to 𝑝𝑝0

𝑝𝑝0

𝑞𝑞0

M2, probability to 
be matched to 𝑞𝑞0

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016



Soft (Fuzzy) Maps

“Exploring Collections of 3D Models using Fuzzy Correspondences”, Kim et al., 
SIGGRAPH 2012:
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Soft (Fuzzy) Maps

Set of possible fuzzy maps:  

�ℳ 𝜇𝜇1,𝜇𝜇2 = Γ ∈ ℝ+
𝑛𝑛1×𝑛𝑛2: Γ𝜇𝜇2 = 𝟏𝟏 𝑎𝑎𝑛𝑛𝑑𝑑 𝜇𝜇1𝑇𝑇Γ = 𝟏𝟏𝑇𝑇

𝜇𝜇1 ∈ ℝ𝑛𝑛1 ,𝜇𝜇2 ∈ ℝ𝑛𝑛2 vertex areas

75
From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016

Γ(𝑝𝑝1) 𝜇𝜇2 𝜇𝜇1𝑇𝑇 Γ(𝑝𝑝2) n1
𝑛𝑛2 𝑛𝑛2

n1



Matric Alignment
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𝐺𝐺𝑊𝑊 Γ,𝐷𝐷1,𝐷𝐷2 = arg min
Γ∈ �ℳ

∑𝑒𝑒𝑗𝑗𝑘𝑘𝑙𝑙 𝑫𝑫𝑒𝑒𝑗𝑗
𝟏𝟏 − 𝑫𝑫𝑘𝑘𝑙𝑙

𝟐𝟐 2
Γ𝑒𝑒𝑘𝑘Γ𝑗𝑗𝑙𝑙

𝑀𝑀1 M2

𝑝𝑝0

𝑞𝑞0

𝑝𝑝

𝑞𝑞

Compare distances,
Use matching 

probability as weights

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016



Soft Map Entropy

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016

𝐻𝐻 Γ = −�
𝑒𝑒𝑘𝑘

Γ𝑒𝑒𝑘𝑘 ln Γ𝑒𝑒𝑘𝑘

Small entropy       Γ is sparse (close to a permutation)

Fuzziness       faster convergence

arg min
Γ∈ �ℳ

𝐺𝐺𝑊𝑊 Γ,𝐷𝐷1,𝐷𝐷2 − 𝛼𝛼𝐻𝐻(Γ)



Parameter Selection

𝑝𝑝0

𝑞𝑞0

𝛼𝛼 = 8 ⋅ 10−3𝛼𝛼 = 7 ⋅ 10−4

From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016



Matric Alignment

79From: Solomon et al. “Entropic Metric Alignment for Correspondence Problems” 2016

Mesh-point cloud 
correspondence

Mesh-graph 
correspondence



Conclusion

• There are MANY different approaches to compute 

correspondence

• The discretization is crucial 

• Continuous vs. combinatorial 

• Output accuracy

• Intermediate discretizations (e.g. functional maps) are useful 
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Conclusion

• There are MANY different approaches to compute 

correspondence

• More categories:

• Volumetric correspondence

• Partial correspondence

• Machine learning methods
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Thank you!

Questions?

82


	�Maps between Shapes�(shape correspondence / matching)
	Outline
	Shape Correspondence
	Categories (full correspondence)
	Categories (partial correspondence)
	Discrete Shape Correspondence
	Discrete Shape Correspondence
	Non Trivial Shape Correspondence
	Application – Texture Transfer
	Joint Remeshing
	Joint Remeshing
	Joint Remeshing
	Application – Shape Interpolation
	More Applications
	Non Trivial Shape Correspondence
	Non Trivial Shape Correspondence
	Non Trivial Shape Correspondence
	Evaluation
	Evaluation
	Conformal Distortion
	Evaluation
	Qualitative Evaluation
	Semi-automatic Matching
	Parameterization based
	Discrete Dirichlet Energy
	Discrete Dirichlet Energy
	Discrete Dirichlet Energy
	Parameterization-based Correspondence
	Parameterization-based Correspondence
	Parameterization-based Correspondence
	Parameterization-based Correspondence
	Discrete Dirichlet Energy
	Discrete Dirichlet Energy
	Discrete Precise Maps
	Discrete Precise Maps
	Discretization – Dirichlet Energy
	Discrete Dirichlet Energy
	Minimizing the Dirichlet Energy
	Reversibility
	Reversible Harmonic Energy
	Reversible Harmonic Energy
	Elastic Energy
	Shape Correspondence and Deformation
	Membrane Energy
	Bending Energy
	Elastic Matching
	Elastic Matching
	Is the problem solved?
	Descriptor Matching
	Descriptor Matching
	Descriptor Matching
	Descriptor Matching
	Functional Maps
	Functional Maps
	Functional Maps – Reduced Basis
	Functional Map Computation
	Functional Map Computation
	Functional Map Computation
	Functional Maps & Partiality
	Functional Map Computation
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map to Pointwise Map
	Functional Map Summary
	Functional Map Summary
	Soft (Fuzzy) Maps
	Soft (Fuzzy) Maps
	Soft (Fuzzy) Maps
	Matric Alignment
	Soft Map Entropy
	Parameter Selection
	Matric Alignment
	Conclusion
	Conclusion
	Slide Number 82

