Maps between Shapes (shape correspondence / matching)

Danielle Ezuz

Technion – Israel Institute of Technology

SGP Graduate School 2019

Outline

- Introduction
 - Problem formulation
 - Applications
- Semi-automatic Matching
- Fully automatic methods
 - Functional maps
 - Fuzzy maps

Shape Correspondence

Given two shapes M_1 and M_2 , compute a semantic map $\phi_{12}: M_1 \rightarrow M_2$:

Categories (partial correspondence)

Rigid

Non Rigid, (nearly) Isometric Non Rigid & Non Isometric

Discrete Shape Correspondence

How are discrete maps between shapes represented? Vertex-to-vertex maps: list of target vertex indices (n_1 integers)

Discrete Shape Correspondence

How are discrete maps between shapes represented?

Precise maps: target face index and three barycentric coordinates for each source vertex

How should the correspondence look like? Fingers, palm – straightforward Where should we map the bottom part?

Solution #1: the bottom part has no match Solution #2: the bottom part should be mapped smoothly

What do we need it for?

Application – Texture Transfer

From: "Weighted Averages on Surfaces", Panozzo et al. 2013

Joint Remeshing

Joint Remeshing

Joint Remeshing

Application – Shape Interpolation

From: "Time-Discrete Geodesics in the Space of Shells", Heeren et al. 2012

More Applications

- Shape alignment for application of DNNs on 3D
- Deformation transfer
- Joint remeshing
- Statistical shape analysis
- Registration
- Object recognition
- ...

What do we need it for? Interpolation:

 M_2

With partial correspondence Interpolation: Behrend Heeren

 M_2

What do we need it for? Interpolation:

What do we need it for? Texture transfer:

The desired correspondence is application dependent

Evaluation

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph

Evaluation

How can we evaluate a given map quality?

Given a ground truth map, compute the cumulative error graph

19

Conformal Distortion

A conformal map preserves angles

Evaluation

How can we evaluate a given map quality?

Measure *conformal distortion* (angle preservation)

Qualitative Evaluation

Visualization using texture transfer:

Target Texture (projection)

Locally and globally accurate map

Globally accurate, locally distorted map

Semi-automatic Matching

Parameterization based

Motivation: the Dirichlet energy measures smoothness

$$E(\phi_{12}) = \frac{1}{2} \int_{M_1} |d\phi_{12}|^2$$

A map is harmonic if it is a critical point of the Dirichlet energy

Discrete Dirichlet Energy

Discrete Dirichlet Energy

The gradient of a matching energy:

Discrete Dirichlet Energy $E_D(\phi_{12}) = \sum_{(u,v)\in E_1} w_{uv} d_{M_2}^2(\phi_{12}(u), \phi_{12}(v))$

Gradient of the Dirichlet energy:

- Computationally expensive (geodesics on target)
- Well defined only for hyperbolic target

Motivation: for some target domains the problem is much simpler

Common domain examples:

- Plane
- Sphere
 - Uniformization theorem: any genus zero surface can be mapped conformally to the unit sphere
- Orbifolds [Aigerman et al.]
 - Spherical
 - Hyperbolic

Image from: "Mobius Voting For Surface Correspondence", Lipman & Funkhouser, SIGGRAPH 2009

Aigerman & Lipman, "Hyperbolic Orbifold Tutte Embeddings": Use a hyperbolic orbifold as the common domain

Images from: "Hyperbolic Orbifold Tutte Embeddings", Aigerman & Lipman, SIGGRAPH Asia 2016 ³⁰

Hyperbolic orbifold common domain:

- + Gradient of the Dirichlet energy is well defined
- + Bijectivity is well defined and guaranteed (continuous setting)
- + Distances can be computed analytically
- + Not limited to vertex-to-vertex output

However:

- Continuous guarantees do not always hold in discrete cases
- Composition of maps might not be with minimal distortion
- Topological constraints (same genus)

Discrete Dirichlet Energy

Discrete Dirichlet Energy $E_D^{Euc}(\phi_{12}) =$ $w_{uv} \| \phi_{12}(u) - \phi_{12}(v) \|^2$ $(\underline{u}, \overline{v}) \in E_1$ M_2 M_1 **1**] 0

Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

Discrete Precise Maps

Stochastic matrices with barycentric coordinates at each row:

 $V_2 \in \mathbb{R}^{n_2 \times 3}$ is a matrix with vertex coordinates of M_2

ith row of

 $P_{12}V_{2}$

Discretization – Dirichlet Energy

If we replace the geodesic distances by Euclidean distances, the discrete Dirichlet energy is:

$$E_D^{Euc}(\phi_{12}) = \sum_{(u,v)\in E_1} w_{uv} \|\phi_{12}(u) - \phi_{12}(v)\|^2$$

$$= \dots = \|P_{12}V_2\|_{W_1}^2$$
Discrete Dirichlet Energy

We use a *high dimensional embedding* where Euclidean distances approximate geodesic distances (MDS)

 $X_2 \in \mathbb{R}^{n_2 \times 8}$

Then the discrete Dirichlet energy is approximated by:

$$E_D(P_{12}) = \|P_{12}X_2\|_{W_1}^2$$

From: "Reversible Harmonic Maps between Discrete Surfaces", Ezuz et al., TOG 2019

Minimizing the Dirichlet Energy

From: "Reversible Harmonic Maps between Discrete Surfaces", Ezuz et al., TOG 2019

Reversibility

• We add a reversibility term to prevent the map from shrinking

Reversible Harmonic Energy

"Reversible Harmonic Maps between Discrete Surfcaes", Ezuz et al. 2019: Combine the Dirichlet energy and the reversibility term:

 $E(P_{12}, P_{21}) = \alpha E_D(P_{12}) + \alpha E_D(P_{21}) + (1 - \alpha) E_R(P_{12}, P_{21})$

The parameter α controls the trade off Optimization: half quadratic splitting and alternating minimization

From: "Reversible Harmonic Maps between Discrete Surfaces", Ezuz et al., TOG 2019

Reversible Harmonic Energy

- + Distortion is minimized directly (results have low conformal distortion)
- + **Bijectivity** is promoted using reversibility
- + No topological constraints
- + Not limited to vertex-to-vertex output

However: Intrinsic methods do not align extrinsic features

From: "Reversible Harmonic Maps between Discrete Surfaces", Ezuz et al., TOG 2019

Elastic Energy

The discrete thin-shell energy consists of two terms:

- Membrane energy: E_M
- Bending energy: E_B

$$E_{elastic} = \alpha E_M + \eta E_B$$

Frequently used for shape deformation, tricky

to optimize for shape correspondence

Shape Correspondence and Deformation

Correspondence is a constrained deformation

Membrane Energy

Sum of area distortion per triangle:

$$E_M = \sum_{t \in faces} \hat{a}_t W(t, \hat{t})$$

 $W(t, \hat{t})$ is a non linear functional that is **minimal** only for **rigid transformations**

Bending Energy

The bending energy compares dihedral angles:

$$E_B(X,Y) = \sum_{e \in edges} w_e (\theta_e - \hat{\theta}_e)^2$$

Aligns mean curvature

Elastic Matching

HOT: "Hyperbolic orbifold tutte embeddings", Aigerman & Lipman, SIGGRAPHOAFIA 2016 Elastic: "Elastic Correspondence between Triangle Meshes", Ezuz et al., Eurographics 2019

Elastic: "Elastic Correspondence between Triangle Meshes", Ezuz et al., Eurographics 2019

Is the problem solved?

Nice results of semi-automatic methods, but:

- Full matching, what about partiality?
- What if we do not have landmarks?

Next: fully automatic correspondence

Heat Kernel Signature (HKS)

Wave Kernel Signature (WKS)

50

What about non isometric shapes?

Various methods use deep learning to learn consistent descriptors

Image from: "Geodesic Convolutional Neural Networks on Riemannian Manifolds", Masci et al., 3DRR 2015

Say we computed matching descriptors, how do we compute correspondence?

- "The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis", Aubry et al. 2011: an iterative approach based on nearest neighbors in descriptor space
- "Efficient Deformable Shape Correspondence via Kernel Matching", Vestner et al., 3DV 2017: global combinatorial approach

Functional Maps

Function correspondence is linear

Functional Maps

The eigenfunctions of the Laplace-Beltrami operator form the basis:

Functional Maps – Reduced Basis

Descriptor correspondence is easy to formulate:

 $argmin_{C_{12}} ||f_1 - C_{12}f_2||^2$

 $f_1 \in \mathbb{R}^{k_1}$ descriptor on M_1 (reduced basis coefficients)

 $f_2 \in \mathbb{R}^{k_2}$ descriptor on M_2 (reduced basis coefficients)

Laplacian commutativity promotes isometries:

$$argmin_{C_{12}} ||C_{12}\Delta_2 - \Delta_1 C_{12}||^2$$

 $\Delta_1 \in \mathbb{R}^{k_1 \times k_1}, \Delta_2 \in \mathbb{R}^{k_2 \times k_2}$ Laplace Beltrami operators, projected on

the reduced bases Φ_1, Φ_2

Laplacian commutativity promotes isometries:

 $argmin_{C_{12}} ||C_{12}\Delta_2 - \Delta_1 C_{12}||^2$

"Interactive Curve Constrained Functional Maps", Gehre et al., SGP 2018: Curve constraints + Laplacian commutativity

Works well for non isometric shapes as well

Image from: "Interactive Curve Constrained Functional Maps", Gehre et al., SGP 2018

Functional Maps & Partiality

"Partial Functional Correspondence", Rodolà et al., SGP 2017:

The diagonal angle depends on the area ratio

Image from: "Partial Functional Correspondence", Rodolà et al., SGP 2017

We computed a functional map, what's next?

- For some applications we can use the functional map as is
 - For example, texture transfer just requires transferring functions
- For some applications we must **convert** the functional map to a pointwise map

A possible simple approach [Ovsjanikov et al. 2012]:

- For each vertex of M_2
 - Map an indicator function at this vertex to M_1
 - Find the vertex of M_1 where the value of the mapped function is maximal

A better approach [Ovsjanikov et al. 2012]: Compute indicator functions on both shapes, compare

Finding nearest indicator function generates vertex-to-vertex output

Finding nearest indicator function generates vertex-to-vertex output

"Deblurring and Denoising of Maps between Shapes", Ezuz & Ben-Chen, SGP 2017:

Instead of nearest neighbors among vertices only, find nearest

neighbors on faces

An algebraic approach:

$$\arg\min_{P_{12}\in S} \left\| C_{12} - \Phi_1^{\dagger} P_{12} \Phi_2 \right\|_F^2$$

 $S = \{$ functional maps that uniquely define pointwise maps $\}$

Difficult to solve, usually underconstrained

We add a regularizer:

$$P_{12}^* = \arg\min_{P_{12}\in S} \left\| C_{12} - \Phi_1^{\dagger} P_{12} \Phi_2 \right\|_F^2 + R(P_{12})$$

Should guarantee:

- Unique global minimizer
- Efficient optimization
- Maps with "good" properties

We add a regularizer:

$$P_{12}^{*} = \arg \min_{P_{12} \in S} \left\| C_{12} - \Phi_{1}^{\dagger} P_{12} \Phi_{2} \right\|_{F}^{2} + R(P_{12})$$

Constrains the projection of $P_{12} \Phi_{2}$ projection of $P_{12} \Phi_{2}$
on Φ_{1} on the orthogonal
complement of Φ_{1}

- Efficient optimization
- Maps with "good" properties

We add a regularizer:

$$P_{12}^{*} = \arg \min_{P_{12} \in S} \left\| C_{12} - \Phi_{1}^{\dagger} P_{12} \Phi_{2} \right\|_{F}^{2} + \underline{R(P_{12})}$$

Should constrain the projection of $P_{12} \Phi_{2}$ on the **orthogonal complement** of Φ_{1}

- Should guara
 - Unique global minimizer
 - Efficient optimization
 - Maps with "good" properties

As small as possible

2

Regularize to favor smoother maps: $P_{12}\Phi_2 \in span(\Phi_1)$

$$P_{12}^{*} = \arg\min_{P_{12} \in S} \left\| \underbrace{C_{12} - \Phi_{1}^{\dagger} P_{12} \Phi_{2}}_{\text{Similarity term}} \right\|_{F}^{2} + \underbrace{\left\| \left(Id - \Phi_{1} \Phi_{1}^{\dagger} \right) P_{12} \Phi_{2} \right\|_{M_{1}}^{2}}_{\text{Smoothness term}}$$
• Unique minimizer

- Efficient minimization
- Pointwise map does not induce spurious high frequencies

Useful even for pointwise maps!

Given a noisy pointwise map:

- Convert it to a functional map (project on reduced bases)
 - Removes high frequencies
- Convert back to a pointwise map

From: "Deblurring and Denoising of Maps between Shapes", Ezuz & Ben-Chen, SGP 2017

Target

Functional Map Summary

Functional map computation is efficient, but relation to discrete pointwise maps is not completely clear

What subset of functional maps actually represents pointwise maps?

Functional Map Summary

"Informative Descriptor Preservation via Commutativity for Shape Matching",

Nogneng & Ovsjanikov, Eurographics 2017:

A functional map corresponds to a pointwise map iff it preserves pointwise products: $Cf \otimes Ch = C(f \otimes h)$

Nogneng & Ovsjanikov used soft commutativity constraints

Can we formulate hard constraints for a functional map to correspond to pointwise?
Soft (Fuzzy) Maps

Compute the **probability** that a pair of points correspond

Soft (Fuzzy) Maps

"Exploring Collections of 3D Models using Fuzzy Correspondences", Kim et al., SIGGRAPH 2012:

Soft (Fuzzy) Maps

Set of possible fuzzy maps:

$$\overline{\mathcal{M}}(\mu_1,\mu_2) = \left\{ \Gamma \in \mathbb{R}^{n_1 \times n_2}_+ : \Gamma \mu_2 = \mathbf{1} \quad and \quad \mu_1^T \Gamma = \mathbf{1}^T \right\}$$

$$\stackrel{\uparrow}{\underset{\downarrow}{n_1}} \left(\underbrace{- \Gamma(p_1)}_{\underset{\downarrow}{n_2}} \right) \left(\begin{smallmatrix} I \\ \mu_2 \\ I \end{smallmatrix} \right) \quad \underbrace{- n_2}_{\underset{\downarrow}{n_2}} \left(\underbrace{- \mu_1^T}_{\underset{\downarrow}{n_2}} \right) \left(\begin{smallmatrix} I \\ \Gamma(p_2) \\ I \end{smallmatrix} \right) \right) \stackrel{\uparrow}{\underset{\downarrow}{n_1}} 1$$

 $\mu_1 \in \mathbb{R}^{n_1}, \mu_2 \in \mathbb{R}^{n_2}$ vertex areas

Matric Alignment

Soft Map Entropy

$$H(\Gamma) = -\sum_{ik} \Gamma_{ik} \ln(\Gamma_{ik})$$

Small entropy $\rightarrow \Gamma$ is sparse (close to a permutation)

Fuzziness — faster convergence

$$\arg\min_{\Gamma\in\mathcal{\overline{M}}} GW(\Gamma, D^1, D^2) - \alpha H(\Gamma)$$

$$\alpha = 7 \cdot 10^{-4}$$

Matric Alignment

Mesh-point cloud correspondence

From: Solomon et al. "Entropic Metric Alignment for Correspondence Problems" 2016

Mesh-graph correspondence

Conclusion

- There are MANY different approaches to compute correspondence
- The discretization is crucial
 - Continuous vs. combinatorial
 - Output accuracy
 - Intermediate discretizations (e.g. functional maps) are useful

Conclusion

- There are MANY different approaches to compute correspondence
- More categories:
 - Volumetric correspondence
 - Partial correspondence
 - Machine learning methods

Thank you!

Questions?

