Optimization Techniques for Geometry Processing

Justin Solomon Sebastian Claici

Inequality constrained optimization

General form

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x)\\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

Searching for globally optimal solutions usually requires convexity.

Searching for globally optimal solutions usually requires convexity.

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Searching for globally optimal solutions usually requires convexity.

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x)\\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

is a **convex optimization problem** if f(x)and $g_i(x)$ are convex functions

Equality constraints must be **affine**.

Equivalent:

$$g(x) = 0$$

 $g(x) \le 0$ and $g(x) \ge 0$

Problems with convex objectives and convex constraints can be solved to global optimality.

Convex problem classes

Linear program (LP)

General form

Linear program (LP)

Linear program (LP)

 c^{1}

Example LP

Find the largest ball enclosed in a polyhedron.

 $\mathsf{Ball} \ \mathcal{B} = \{x_c + u \mid \|u\|_2 \le r\}$

Ball of radius r is inside halfspace $a^{\mathsf{T}}x \leq b$ if $a^{\mathsf{T}}x + r \|a\|_2 \leq b$

$$\begin{array}{ll} \underset{r,x}{\text{minimize}} & -r\\ \text{subject to} & a_i^{\mathsf{T}}x + r \|a_i\|_2 \leq b_i, \ i = 1, \dots, m. \end{array}$$

Quadratic program (QP)

General form quadratic objective minimize $\frac{1}{2}x^{\mathsf{T}}Qx + p^{\mathsf{T}}x + c$ subject to $Ax \leq b$

Positive definite Q

Quadratic program (QP)

General form

Negative definite Q

Quadratic program (QP)

Example QP

Distance between two polyhedra:

 $dist(\mathcal{P}, \mathcal{Q}) = \inf\{\|p - q\|_2 \mid p \in \mathcal{P}, q \in \mathcal{Q}\}\$

Quadratic program

$$\begin{array}{ll} \underset{x=(p,q)}{\text{minimize}} & \|p-q\|_{2}^{2} \\ \text{subject to} & A_{\mathcal{P}}p \leq b_{\mathcal{P}} \\ & A_{\mathcal{Q}}q \leq b_{\mathcal{Q}} \end{array}$$

Example QP

Real time object deformation [Jacobson et al., 2011]

$$\begin{aligned} \underset{w_{j}, j=1,...,m}{\arg\min} \sum_{j=1}^{m} \frac{1}{2} \int_{\Omega} \|\Delta w_{j}\|^{2} dV \\ \text{subject to:} \ w_{j}|_{H_{k}} = \delta_{jk} \\ w_{j}|_{F} \text{ is linear} \\ \sum_{j=1}^{m} w_{j}(\mathbf{p}) = 1 \\ 0 \leq w_{j}(\mathbf{p}) \leq 1, \ j = 1, ..., m, \end{aligned}$$

Second order cone program (SOCP)

Second order cone program (SOCP)

Example SOCP

Dynamical optimal transport [Lavenant et al. 2018]

Semidefinite program (SDP)

General form

$$\begin{array}{ll} \underset{X}{\text{minimize}} & \operatorname{tr}(CX) = \sum_{ij} C_{ij} X_{ij} \\ \text{subject to} & \operatorname{tr}(A_i X) \leq b_i, \ i = 1, \dots, m \\ & X \succeq 0 \end{array}$$

Example SDP

Surface correspondence [Maron et al. 2016].

$$\min_{X,R} \|RP - QX\|_F^2$$

$$X\mathbf{1} = \mathbf{1}, \quad \mathbf{1}^T X = \mathbf{1}^T$$

$$X_j X_j^T = \operatorname{diag}(X_j), \quad j = 1 \dots n$$

$$RR^T = R^T R = I$$

Can relax final two constraints:

$$Z_j \succeq \begin{bmatrix} X_j \\ [R] \end{bmatrix} \begin{bmatrix} X_j \\ [R] \end{bmatrix}^T$$

Hierarchy of convex programs

$\mathsf{LP} \subset \mathsf{QP} \subset \mathsf{QCQP} \subset \mathsf{SOCP} \subset \mathsf{SDP}$

Algorithms

Finding a feasible point

Start with:

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x)\\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

Replace with a **feasibility** problem

 $\begin{array}{ll} \underset{x}{\text{minimize}} & t\\ \text{subject to} & g_i(x) \leq t, \ i = 1, \dots, m. \end{array}$

Finding a feasible point

Start with:

 $\begin{array}{ll} \underset{x}{\text{minimize}} & f(x)\\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m. \end{array}$

Replace with a **feasibility** problem

 $\begin{array}{ll} \underset{x}{\text{minimize}} & t\\ \text{subject to} & g_i(x) \leq t, \ i = 1, \dots, m. \end{array}$

Stop when $t \le 0$

Active set methods

Treat problem as equality constrained.

Maintain an active constraint set A:

• If an inequality constraint is violated add it as an equality constraint to A.

• Remove constraints that aren't active.

Treat problem as equality constrained.

Maintain an active constraint set A:

- If an inequality constraint is violated add it as an equality constraint to A.
- Remove constraints that aren't active.

Recall: the **optimum** is on the boundary.

Start with feasible x^0 .

Start with feasible x^0 .

Find minimizer from x^0 .

- Start with feasible x^0 .
- Find minimizer from x^0 .

Inequality constraint is violated:

• Add equality constraint to active set.

- Start with feasible x^0 .
- Find minimizer from x^0 .

Inequality constraint is violated:

• Add equality constraint to active set.

Repeat until optimality.

- Start with feasible x^0 .
- Find minimizer from x^0 .

Inequality constraint is violated:

• Add equality constraint to active set.

Repeat until optimality.

Active set method

- Many variants
 - primal, dual, primal-dual methods, etc.
- Many specializations
 - LPs, QPs, ...
- Good choice for problems:
 - with linear and quadratic constraints
 - small or moderate amount of constraints

- Disadvantage
 - may require many iterations

Replace constrained optimization by unconstrained problem.

Logarithmic barrier (smooth and convex approximation)

Solve

$$\begin{array}{c} \underset{x}{\text{minimize}} \quad f(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-g_i(x)) \end{array}$$

using unconstrained methods.

Set $t \leftarrow 10t$ and iterate until $\frac{m}{t} \leq \varepsilon$

- Many variants
 - primal-dual methods, reflective, etc.
- Many specializations
 - LPs, QPs, SDPs, ...
- Good choice for problems:
 - with many constraints
 - non-convex feasible regions

- Disadvantage
 - limited warm start capabilities

Summary

Optimization is everywhere in geometry processing.

We've looked at algorithms for:

- Unconstrained optimization
- Equality constrained optimization
- Inequality constrained optimization

Take home messages:

- **Convexity** is crucial!
- Use the most **specialized** algorithm for best performance.

Further reading

Yurii Nesterov Lectures on Convex Optimization Springer, 2018

Jorge Nocedal and Stephen J. Wright Numerical Optimization Springer, 2006

Stephen Boyd and Lleven Vandenberghe Convex Optimization Cambridge University Press, 2004

Software

- Solvers:
 - Software from COIN-OR foundation
 - CPLEX
 - o Gurobi
 - o Mosek
- Interfaces
 - o CVX
 - o CoMISo
- Programming languages with good support
 - Python
 - MATLAB
 - o Julia