Reliable and efficient mesh
processing

Marco Attene
CNR — IMATI Genova

@ imati



The National Research
Council (CNR)

The CNR is the largest public research

Institution in Italy.

Mission: to perform, transfer and enhance
research activities, to promote innovation and
competitiveness of the national industrial
system, to promote the internationalization of
the national research system, to provide
to emerging

technologies and solutions
public and private needs.

The scientific network:
105 Institutes,

7 Departments

17 Research Areas,
8.000 employees

Switzerland
enevab'
& ©Como
Milan
(o]
renoble { y
9 ~ Turin
(o]
Genoa
o
Monaco
o
lle Cannes
Corse
Sardeg
Caglia
o

Tunis
U Google

‘I‘.‘irecht_‘enstein £ re)
Sze
) I ic
‘ Slovenia Zagreb
i et Novi S
T”gs? Hosu (
Verona Venice - . .
o o Q
Padua : V
Croatia P
Bosnia and |
Herzegovina !
Bologna
o -
Zad 3 D
Rimini 0 Sar%evo
o]
; San Marino
PI‘? % s%m
Florence
"Montene
Ital - X,
y Dubrovniko_ phdgorica
; @
Mogropwua ™
®Rome
Bari
o
Naples
9 (=] Materao Taranto
Pompei 3 LESCe
Reggio
Calabri
Palermo asge
[o)
Trapanio :
o] .
Marsala Sicilia Catgnla
Syracuse
o



@ imati

The Institute for Applied Mathematics and
Information Technologies "Enrico Magenes"
performs research in many areas of
mathematics, computer science and their
applications.

Three units:

- Pavia: differential modeling and PDEs

« Milano: Stochastic Modeling and Data
analysis

« Genova: Shape and Semanitics Modeling,
Computing Architectures and HPC

LCHTa
o

Biella
o
Ilvrea
o
[m] E25
E612
Po
Turin
o]
Asti
o
|E717 |
|
Bcr‘a Aoba

/ Lugano
(=} \

'x;_ Lecco
Varese [ - 3
2 oComo
[29]
= Q-
o
Milan
Novara o)
o
[22¢] (=]
Pavia
o o
[27]
o oTortona
Alessandria
7]
Genoa
o)
Rapallo
o

Savona
[»]

Finale Ligure

o
Sestri Levante

Parco delle
Orobie
Bergamasche

Bergamo
o

Bregcia

Cremona
o
h

(o]
Piacenza

Monterosso

al Mare

La Spezia
Q



. f } Lug n(;

:\’1 = ).‘(r . N 0), Parco delle
- . i A K\ - Beroz;?nbalzche
Q) 1imati SRV L
=3 Bergoamo
. @] Brescia
The Institute for A
Information Technol
performs research i
mathematics, comp e AR R
applications. }Z | : s
%\ Eurographlcs 19 =E i W
[ 4 Piacenza
RPN —. \. 1 ' l\/Ia 6-10 o =
. j b P VIS / i ‘ i \" oTortona
Three units:
| E33 |

- Pavia: differential modeling and PDEs

« Milano: Stochastic Modeling and Data
analysis

« Genova: Shape and Semanitics Modeling,
Computing Architectures and HPC GO

Savona
o

Rapallo
o

o
Sestri Levante

Monterosso

Finale Ligure
=19 al Mare

)

’\ “AN Spezia
Q



Outline

* Geometric algorithm implementation — potential pitfalls
* Mesh repairing

* Robust geometric programming

e Libraries and paradigms

* Conclusions



Geometric Algorithm Implementation



Geometric Algorithm Implementation

L. Kettner et al. / Compusational Geometry 40 (2008) 61-78 67

hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vg, vig1). -
the subsequence (Vi
the subsequence is (v;

o (vj—1, vj) is the subsequence of weak sible edges, the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence ((v5, vi41). (U isah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (v;4,...,vj 1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for

ly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

we:

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.
Failure Aj: A point inside the current hull sees an edge of the current hull
Failure B: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, vy,..., vg_;) of its extreme points in counter-
clockwise order. The line segments (v;, viyp), 0< 7 < & — 1 (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(v;, viy1.r) < 0, we say that the edge (v;, vi41) is weakly visible from r. After initialization, k > 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH, the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

I (v, vig1), oo (01, vf) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
the subsequence (Viyy. ..., v;-1) by r. The subsequence (v;. ..., v;) is taken in the circular sense, i.e.. if i > j then
the subsequence is (v, ..., Ug—1, v, ..., v;). From these properties, we derive the following algorith

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with a, b, ¢ € §. Remove a, b, ¢ from §.
forallr = § do
if there is an edge ¢ visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj)) of edges that are weakly visible from r.
Replace the subsequence (Vit1.....vj—1}in Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

How does one determine whether there is an edge visible from r?7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

How does one identify the sequence ((v;. vip1). (Vis1, vig2). .., (vj—1, v;))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from e until a non-weakly-visible edge is encountered.

How to update the list L7 We can delete the vertices in (v;4,..., v 1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy”). With exact arithmetic, both strategies work equally well.

[

w

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported.
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B:

« Failure Aj: A point outside the current hull sees no edge of the current hull.

» Failure Aj: A point inside the current hull sees an edge of the current hull.

» Failure Bj: A point outside the current hull sees all edges of the convex hull.

» Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A and A3 are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this.
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter- p 8
(indices are modulo k) are the edges of the current hull. .

clockwise order. The line segments (v, vip). 0§ <k —
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The

following properties are key to [hc-upcmuun of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH. p 2 j p 3
Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

o (vj—1, vj) is the subsequence of weak sible edges, the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

If (vg, vig1). -
the subsequence (viy)
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence ((v5, vi41). (U isah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the . p9
visible edges as the starting edge for the next substep.
2. How does one identify the sequence ((vi. vip1) (Vs vig2)
ise along the boundary until a non-we

-+ (vj—1, v 7 Starting from a visible edge e, we
kly-visible edge is encountered. Similarly, we move

clockwise from ¢ until a non-weakly-visible edge is encountered ®
3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as p6
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for

weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well. o

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor- ‘ 1

rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported

Duplicate points are reported only ong
There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull. .
Failure Aj: A point inside the current hull sees an edge of the current hull
Failure B: A point outside the current hull sees all edges of the convex hull

Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this p4
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0 < k — 1 (indices are modulo k) are the edges of the current hull.
If orientation(v;, vi41,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, viy1) is visible from r. If
0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k 2 3. The
to the operation of the algorithm.

orieniation(vi, Viy1.r)
following properties are ki

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vit1), (vj—1.vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
the subsequence (v vj—1) by r. The subseguence (; ;) is taken in the circular sense, i. = j then
the subsequence is ( + Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge e visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. ..., vj—1)in Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

- How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as

suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.

re Aj: A point inside the current hull sees an edge of the current hull

lure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

YAY!
IT WORKS!!

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vg, vig1). -
the subsequence (Vi
the subsequence is (v;

o (vj—1, vj) is the subsequence of we: sible edges, the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence ((v5, vi41). (U isah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vi—din Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

. How does one identify the sequence ((v; - (vj—1,v5))7 Starting from a visible edge e, we
move counter-clockwise along the boundary kly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for

ly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

12

us

we:

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.
Failure Aj: A point inside the current hull sees an edge of the current hull
Failure B: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A and Az
Property B if we take Aj into account. Are all these failures real

re equivalent to the negation of Property A. Similarly, Failures By and B3 are complete for
zable? We now affirm this




But, in real world...



But, in real world...

L. Kettner et al. / Compusational Geometry 40 (2008) 61-78 67

hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vg, vig1)s -nns (vj—1.vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

the subsequence (v;4
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge e visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

- How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as

suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy”). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.

re Aj: A point inside the current hull sees an edge of the current hull
Failure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this,
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, vy,..., vg_;) of its extreme points in counter-
clockwise order. The line segments (v;, viyp), 0< 7 < & — 1 (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(v;, viy1.r) < 0, we say that the edge (v;, vi41) is weakly visible from r. After initialization, k > 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

I (v, vig1), oo (01, vf) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
the subsequence (Viyy. ..., v;-1) by r. The subsequence (v;. ..., v;) is taken in the circular sense, i.e.. if i > j then
the subsequence is (vi, ..., Ug—1, v, ..., v;). From these properties, we derive the following algorithm:

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with a, b, ¢ € §. Remove a, b, ¢ from §.
forallr = § do
if there is an edge ¢ visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj)) of edges that are weakly visible from r.
Replace the subsequence (vit1. ..., vj—1bin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

How does one determine whether there is an edge visible from r?7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

How does one identify the sequence ((v;. vip1). (Vis1, vig2). .., (vj—1, v;))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from e until a non-weakly-visible edge is encountered.

How to update the list L7 We can delete the vertices in (v;4,..., v 1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.
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‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported.
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B:

« Failure Aj: A point outside the current hull sees no edge of the current hull.

» Failure Aj: A point inside the current hull sees an edge of the current hull.

» Failure Bj: A point outside the current hull sees all edges of the convex hull.

» Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A and A3 are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this.
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation(v;, vi41,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, viy1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (v, wig1 ) - ... (V1. vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
the subsequence (viy) .vj—1) by r. The subsequence (¥; ;) is taken in the circular sense, i.e., if i = j then
the subsequence is (v; + Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge e visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. ..., vj—1)in Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakl le edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

« Failure Aj: A point outside the current hull sees no edge of the current hull.
» Failure Aj: A point inside the current hull sees an edge of the current hull

« Failure By: A point outside the current hull sees all edges of the convex hull

» Failure Bz: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0 < k — | (indices are modulo k) are the edges of the current hull.
If orientation(v;, vig1,r) < 0, we say that r sees the edge (v;, vi4)) and that the edge (v;, vi41) is visible from r. If
orientation(vi, v that the edge (v, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH, the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.
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(vj—1.vj) is the subsequence of w v visible edges. the updated hull is obtained by replacing
+1. ... 1) by r. The subsequence (¥;. ..., ¥;) is taken in the circular sense, i.e., if i = j then
v;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr & § do
if there is an edge ¢ visible from r thes
Compute the sequence ((v;, vig1), (U;
Replace the subsequence (vit1....
end if
end for

{1, vj)) of edges that are weakly visible from r.

segmentation fault

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v; 1 (Vig 1 Vig2) ooy (U1, Uf) arting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj, . _1) after all visible edges are found, as

d in the above sketch (“the off-line strate; n delete them concurrently with the search for

weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

« Failure Aj: A point outside the current hull sees no edge of the current hull.
» Failure Aj: A point inside the current hull sees an edge of the current hull
.
.

Failure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, vy, vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0 < k — | (indices are modulo k) are the edges of the current hull.
If orientation(v;, vig1,r) < 0, we say that r sees the edge (v;, vi4)) and that the edge (v;, vi41) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH, the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vig1)s (vj—1.vj) is the subsequence of w v visible edg
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INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr & § do
if there is an edge ¢ visible from r thes
Compute the sequence ((v;, vig1), (U;
Replace the subsequence (vit1....
end if
end for

A1, vj)) of edges that are weakly visible from r.

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

. How does one identify the sequence ((vi. viq1). (Ve vig2) .o, (Vio1, arting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

. How to update the list L7 We can delete the vertices in (viyy, ..., vj_) after all visible edges are found, as

iC:

weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

« Failure Aj: A point outside the current hull sees no edge of the current hull.

» Failure Aj: A point inside the current hull sees an edge of the current hull

« Failure By: A point outside the current hull sees all edges of the convex hull

» Failure Bz: A point outside the current hull sees a non-contiguous set of edges.

Failures A} and A3 are equivalent to the negation of Property A. Similarly, Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vig1)s -.s (vj—1.vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

the subsequence (v;4
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

- How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as

suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.

re Aj: A point inside the current hull sees an edge of the current hull
Failure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this,
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

o (vj—1, vj) is the subsequence of weak sible edges, the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

If (vg, vig1). -
the subsequence (viy)
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence ((v5, vi41). (U isah. .., (vj—1. vj}) of edges that are weakly visible from r.

Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for
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To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each ’ °
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2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we

ise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as
suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for

ly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.
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‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only ong

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.
Failure Aj: A point inside the current hull sees an edge of the current hull
Failure B: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vig1)s -.s (vj—1.vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

the subsequence (v;4
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

- How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the

visible edges as the starting edge for the next substep.

2. How does one identify the sequence ((v;. viq1), (Vi1 vig2). .., (vj—1, vj))7 Starting from a visible edge e, we p2 p 3
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move j
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as

suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull.

re Aj: A point inside the current hull sees an edge of the current hull
Failure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this,
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, vy, vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0 < k — | (indices are modulo k) are the edges of the current hull.
If orientation(v;, vig1,r) < 0, we say that r sees the edge (v;, vi4)) and that the edge (v;, vi41) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH, the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vig1)s (vj—1.vj) is the subsequence of w v visible edg
the subsequence (Vit1. ..., vj-1) by r. The subsequence (v;
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. the updated hull is obtained by replacing
., vj) is taken in the circular sense, i.e.. if i > j then
v;). From these properties, we derive the following algorithm

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a. b, e) with a, b, ¢ € §. Remove a, b, ¢ from §
forallr & § do
if there is an edge ¢ visible from r thes
Compute the sequence ((v;, vig1), (U;
Replace the subsequence (vit1....
end if
end for

A1, vj)) of edges that are weakly visible from r.

To trn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each
edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.

. How does one identify the sequence ((vi. viq1). (Ve vig2) .o, (Vio1, arting from a visible edge e, we
move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

. How to update the list L7 We can delete the vertices in (viyy, ..., vj_) after all visible edges are found, as

iC:

weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

« Failure Aj: A point outside the current hull sees no edge of the current hull.

» Failure Aj: A point inside the current hull sees an edge of the current hull

« Failure By: A point outside the current hull sees all edges of the convex hull

» Failure Bz: A point outside the current hull sees a non-contiguous set of edges.

Failures A} and A3 are equivalent to the negation of Property A. Similarly, Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this
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hull is updated by forming the tangents from r to CH and updating CH appropriately. The incremental paradigm is
used in Andrew’s [1] and other variants of Graham’s scan [17] and also in the randomized incremental algorithm [3].

The algorithm maintains the current hull as a circular list L = (vg, v, ..., vg_1) of its extreme points in counter-
clockwise order. The line segments (v;, vipp), 0§ < k — | (indices are modulo k) are the edges of the current hull.
If orientation{v;, viy1,r) < 0, we say that r sees the edge (v;, vi41) and that the edge (v;, vip1) is visible from r. If
orientation(vi, vi41.r) < 0. we say that the edge (v;, viy1) is weakly visible from r. After initialization, k = 3. The
following properties are key to the operation of the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH. the edges weakly visible from r form a non-empty consecutive subchain; so do the
edges that are not weakly visible from r.

If (vi, vig1)s -.s (vj—1.vj) is the subsequence of weakly visible edges. the updated hull is obtained by replacing
vj—1) by r. The subsequence (v;, ..., ¥;) is taken in the circular sense, i.e., if i = j then
+ Uk—1, 0, ..., ¥;). From these properties, we derive the following algorithm

the subsequence (v;4
the subsequence is (v;

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangle (a, b, ¢) with @, b, ¢ € §. Remove a, b, ¢ from §
forallr £ § do
if there is an edge ¢ visible from r then
Compute the sequence (¥, Vit1). (Vis1, Vigah. .., (vj—1. vj}) of edges that are weakly visible from r.
Replace the subsequence (vit1. vj—1pin Lbyr.
end if
end for

To trn the sketch into an algorithm, we provide more information about the substeps:

- How does one determine whether there is an edge visible from r7 We iterate over the edges in L, checking each

edge using the orientation predicate. If no visible edge is found, we discard r. Otherwise, we take any one of the
visible edges as the starting edge for the next substep.
How does one identify the sequence ((v;. vip1). (Vis1, vig2). .., (vj—1, v;))7 Starting from a visible edge e, we ’
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move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly, we move
clockwise from ¢ until a non-weakly-visible edge is encountered

3. How to update the list L7 We can delete the vertices in (vj4, ..., vj_1) after all visible edges are found, as

suggested in the above sketch (“the off-line strategy™) or we can delete them concurrently with the search for
weakly visible edges (“the on-line strategy™). With exact arithmetic, both strategies work equally well.

‘We give a detailed implementation in Appendix A: it was used for all experiments. Note that the algorithm {cor-
rectly) reports extreme points only. Points in the interior of boundary edges of the convex hull are not reported
Duplicate points are reported only once.

There are four logical ways to negate Properties A and B

Failure Ay: A point outside the current hull sees no edge of the current hull. O
re Aj: A point inside the current hull sees an edge of the current hull
Failure By: A point outside the current hull sees all edges of the convex hull
Failure B2: A point outside the current hull sees a non-contiguous set of edges.

Failures A; and Ay are equivalent to the negation of Property A. Similarly. Failures B; and By are complete for
Property B if we take Aj into account. Are all these failures realizable? We now affirm this,
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Many different definitions in literature, not
always compatible with each other ®
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* For most authors/papers, the answer is YES
* Sometimes this is an implicit assumption

* More precisely, an Euclidean simplicial complex
* Not to be confused with an abstract simplicial complex

* Possible additional reqgs:
* 2-manifold, no boundary, genus 0, ...

Definition

A simplicial complex K in R" is a collection of simplices in R"
s.t.:
1. Every face of a simplex of K is in K

2. The intersection of any two simplices of K is a face of both

simplicial complexes not a simplicial complex
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line L, their midpoint m=(a+b)/2 is also on L and is
different from both aand b
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Vertex positions are 3D points with real coordinates.
Example implication:

for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from bothaand b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, ...

Possible additional requirements
2-manifold, no boundary, genus O, ...

Floating point arithmetic

Vertex coordinates can assume a finite number of
different values

Example implication:

m is probably not on L
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Bridge the gap

Bad input -> Mesh checking/repairing
Weak code -> Robust programming

Real-world models Floating point arithmetic
‘w\ Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to eitheraorb

iy

YOUR INPUT YOUR CODE




Mesh repairing




MOTIVATION

e Real world meshes often contain various
defects, depending on their origin.

« But many applications assume ideal
meshes free from defects or flaws.

« Mesh Repairing adapts raw mesh models
to specific application requirements.

12



MOTIVATION

* Complexity of the repair task is often underestimated by non-experts.
* A large difference between ,looks good” and ,,is good”

* Most repair algorithms focus on certain defect types and ignore or even
introduce others.

13



Generic Mesh Repairing

* The general mesh repair problem is ill-posed
* Inherent ambiguities (topologic & geometric)
 Solution: application-specific context knowledge, heuristics, interactive user

input ...
C

~
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THE APPLICATION PERSPECTIVE

e Categorization of:
* Defect types
* Upstream applications
* based on typical characteristics/defects of produced meshes.

 Downstream applications
* based on typical requirements on consumed meshes.

* Repair approaches
* along with specific requirements and guarantees

Marco Attene, Marcel Campen and Leif Kobbelt. Polygon Mesh Repairing: an application perspective
ACM Computing Surveys, 2013 15
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 Downstream applications
* based on typical requirements on consumed meshes.

* Repair approaches
* along with specific requirements and guarantees

Upstream Repairing Downstream

app algo app
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DEFECT TYPES

* Local connectivity

* |solated vertices
* ,Avertex thatis not incident to any edge”

* Dangling edges

¢ nEdgeS without any incident tr‘iang|e5” I"
* Singular edges F =
« ,Edges with more than two incident triangles” 4

 Singular vertices /
» ,Vertices with a non-disc neighborhood”

16



DEFECT TYPES

* Global topology

* Topological noise
e Tiny spurious handles or tunnels”
e ,Tiny disconnected components”
* ,Unwanted cavities”

* Orientation
e ,Incoherently oriented faces”

17



DEFECT TYPES

* Geometry

* Holes

* ,Missing pieces within a surface”
* e.g. due to occlusions during capturing

* Gaps
* ,Missing pieces between surfaces”
e e.g. due to inconsistent tessellation routines

e Cracks / T-Junctions

18




DEFECT TYPES

* Geometry
* Degenerate elements
e ,Triangles with (near-)zero area“
* Self-intersections
* ,Non-manifold geometric realization”

* Sharp feature chamfering
» ,Aliasing artifacts due to sampling
pattern”
* Data noise
e ,Additive noise due to measurement imprecision”

19



GENERAL POSITION

* Assume that points are in general position...

 What if they are not?
e Can this be considered a defect?
 Geometric perturbation
* Symbolic perturbation

e Simulation of Simplicity
* Not really a repairing method (no change in geometry)
* May require repairing aftwerwards (e.g. degenerate elems)

H. Edelsbrunner, E. P. Mlcke. 1990. Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM TOG 9, 1, 66-104.

20



UPSTREAM APPLICATIONS

e Upstream applications (or sources) characterized by:

* Nature
* (physical) real-world data <-> (virtual) concepts

* Approach

* ... employed to convert data to polygon mesh

* Both aspects can be the source of defects and flaws.

21



UPSTREAM APPLICATIONS

* Nature
* Designed

e Basic concept is an abstraction
* Problems due to:
* Inaccuracies in the modeling process
* Inconsistencies in the description/representation
* Digitized
* Measurement of real-world phenomenon
* Problems due to:

* Measurement inaccuracies
* Measurement limitations

22



UPSTREAM APPLICATIONS
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UPSTREAM APPLICATIONS

Approach

noise

holes

Intersections

degeneracies

singularities

topolog. noise

aliasing

Tessellation

x | gaps

Depth image fusion

X | X

Raster data contouring

Implicit function contouring

Reconstruction from points

Height field triangulation

Solid model boundary extract.

24



DOWNSTREAM APPLICATIONS

* We consider prototypical requirements of a sample of the wide
application spectrum
* Visualization
Modeling
Rapid Prototyping
Processing
Simulation

25



DOWNSTREAM APPLICATIONS
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Application Group 21 8| |2
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Visualization X
Modeling X| X X
Rapid Prototyping X X | X X
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Simulation XX | X[ X | X | X |X
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REPAIR APPROACHES

* We distinguish between two types:

* Local:
* Handling defects individually by local modifications.
* Low invasiveness, but only few guarantees.

e Global:

e Typically based on a complete remeshing.
* High robustness, but often loss of detail.
* More plausible ambiguity resolution possible.

27



STATE OF THE ART

* Algorithms exist to fix any individual defect discussed so far
* Ref to Attene, Campen, Kobbelt (2013) for comprehensive description

* A specific defect is rarely the only defect
* While fixing one, you may introduce another

* Need to carefully study repairing workflows and/or integrated
algorithms

28



SOME EXAMPLES

* MeshFIX * Polymender
e extremely fast, lightweight and e Extremely fast, lightweight and
robust robust
* raw digitized meshes * Any mesh
* may introduce macroscopic * Distortion everywhere, large
distortions triangle count
* As-exact-as-possible STL fix * TetWild
e Extremely precise and reasonably e extremely robust
fast e any mesh
* designed meshes « Distortion everywhere, large

* only outer geometry triangle count, slow

29



MeshFIX - Raw digitized meshes

* We can assume that:
* Samples are rather uniformly spaced
* Model is densely sampled (opposed to sparse tessellated NURBS)

* Objective:

* |If an area is free of errors, keep it asitis

* What is the typical input?

* An indexed face set, possibly non manifold, self-intersecting, with
degenerate faces, holes, ...

30



MeshFIX - Raw digitized meshes

* We can assume that:
* Samples are rather uniformly spaced
* Model is densely sampled (opposed to sparse tessellated NURBS)

* Objective:
* |If an area is free of errors, keep it asitis

* What is the typical input?
* An indexed face set, possibly non manifold, self-intersecting, with

degenerate faces, holes, ...
Digitized MeshFIX Preusg tet
mesh meshing

30




MeshFIX - repairing pipeline

* Sequence of local approaches
 Creates a valid watertight polyhedral surface

* Works in two successive phases:

* Topology reconstruction
* Geometry correction

31



Topology reconstruction

INPUT: ndexed face set (e.g. an OFF file)

1) Convert to an abstract simplicial complex

2) Convert the complex to a combinatorial manifold

3) Orient consistently (and possibly cut unorientable manifolds)
4) Remove spurious components

5) Fill holes

OUTPUT: a single combinatorial oriented manifold with no boundary

32



Simplicial Neighborhoods

* For the “geometry correction” phase, we make use of
the notion of simplicial neighborhood

1) The simplicial neighborhood N(t) is the set of all the
simplexes which share at least a vertex with the triangle ‘t

2) Thei'th order simplicial neighborhood N;(t) is defined as
N(N(...N(N(t))...)), with ‘i’ nested levels

4

33



Geometry correction: step 1

Remove (nearly) degenerate triangles

Require: A combinatorial manifold M and an integer

threshold maxr_iterations

Ensure: A combinatorial manifold A" and a status notice

|
2: Let S be the set of all the triangles of M’
3: for k = 1 to mazx_iterations do

4
5:

10
11:

12:

13:
14: end for

(success/failure)

M= M

Run the swap/collapse algorithm within S
Let T" be the set of degeneracies in S untreatable
due to topological constraints
if T" = 0 then
terminate with success /* M’ is degener-
acy free */
end if
Let R be the union of the k' — order simplicial
neighborhoods of the t;s € T’
Remove R from M’
Remove possible disconnected components from
M.f
Patch the remaining gaps with a new set P of
triangles
S:=P

34




10:
11;

12:
13:

14:

15:

Geometry correction: step 2

- M

Remove intersecting triangles

= M

Let S be the set of all the triangles of M’
Let & be a uniform 100° voxel grid tightly enclosing

Mf

for k = 0 to maxr_iterations do

Let H be the set of voxels intersecting at least a
triangle of S
Check for triangle-triangle intersections within
each voxel of H
Let T be the set of intersecting triangles detected
above
if T" = 0 then
terminate with success /* M’ is nor self-
intersecting */
end if
Let R be the union of the &' — order simplicial
neighborhoods of all £t £ T
Remove R from M’
Remove possible disconnected components from
M.I'
Patch the remaining gaps with a new set P of
triangles
S:=P

16: end for

35
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Geometry correction: iteration

While patching holes to remove self-intersections, new
degenerate or nearly degenerate triangles may appear,
and/or new intersections may be created

So, after step 2 we check for degeneracies and
intersections again and, if any, we repeat steps 1 and 2,
until no more defects are left

This is not guaranteed to converge, but it normally does
in practical cases

36



Example

AP s >
5|~ FIRSTHTE e
. 7
. SECOND | ﬁ/
Raw Input Combinatorial Manifold Fixed Mesh
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MeshFIX — Concluding remarks

e MeshFIX

* extremely fast, lightweight and robust
* raw digitized meshes

* may introduce macroscopic distortions if
used on inappropriate models

N
AR

Marco Attene. A lightweight approach to repair digitized polygon meshes.
The Visual Computer, 2010
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As-exact-as-possible repair for 3D printing

e Tessellated CAD models
» Typical input for slicers is STL

* The class of STL files is larger than the class of printable models
* There exist well-formed STLs that cannot be printed

* What are the conditions that make a model «printable»?
* How can we repair an unprintable STL to make it printable?



As-exact-as-possible repair for 3D printing

* Tessellated CAD models
* Typical input for slicers is STL

* The class of STL files is larger than the class of printable models
* There exist well-formed STLs that cannot be printed

* What are the conditions that make a model «printable»?
* How can we repair an unprintable STL to make it printable?

Designed : .
AEAP repair 3D printing




As-exact-as-possible

* What you see is what you get

* Assume that the artist wants the print to appear exactly as the rendered
model




As-exact-as-possible # exact

* Artists may approximate thin parts by
zero-thickness sheets of triangles

e But printers cannot extrude zero-
thickness material!

* If extrusion diameter is €, we may turn

our sheets to e-thick solids

. 4!
=l

4




What is «printable»?

Definition. Printable STL

An STL model T is printable if there
exists a T-induced mesh whose
realization is a closed and manifold-
connected polyhedron that coincides
with its outer hull.

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal,
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185



https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185
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Definition. Printable STL
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What is «printable»?

* A «sufficiently connected» solid
* No boundary
* No intersections

* No «occluded» parts
e Reachable from infinity
* Manifold-connected

* |.e. Still connected after removal of
singular simplexes




Overview of the repairing process

Input STL: consider vertex position and triangles as the only reliable
information

* Ignore normals/orientation
e zero-thickness sheets <-> orientation?

Convert STL to printable STL

1. Convert to Euclidean Simplicial Complex
1. We shall omit «Euclidean» from now on
2. Simplicial complex to outer hull

3. Outer hull to printable solid (i.e. thicken possible sheets)



STL to Simplicial Complex

Unify coincident vertices
Remove zero area triangles
Remove duplicated triangles

B W

Resolve intersections




STL to Simplicial Complex

1. Unify coincident vertices

2. Remove zero area triangles
3. Remove duplicated triangles
4. Resolve intersections
Definition

A simplicial complex K in R" is a collection of simplices in R"
s.t.:

1. Every face of a simplex of K is in K

2. The intersection of any two simplices of K is a face of both




Simplicial Complex to outer hull

1. Each triangle has two sides

2. Select a seed triangle
1. Tag its «outer» side

3. Propagate the tag to adjacent triangles

1. Across edges only

2. Propagate on one triangle at each step
1. Across manifold edges: easy
2. Across boundary edges: double orientation
3. Across singular edges: select «outmost» triangles

1

P

internal




Outer hull to printable solid

1. If there are no sheets
1. TERMINATE
2. Else
1. thicken the sheets
2. Resolve possible intersections
once again

3. Track the outer hull once again




Devil is in the details...

Resolving intersections

* If two simplexes intersect, create a new simplex representing the
intersection and split

New coordinates
Floating point inaccuracy




As-exact-as-possible STL fix — Concluding remarks

* As-exact-as-possible STL fix
* Extremely precise and reasonably fast
* designed meshes
* only outer geometry
e Surface holes are not patched

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal,

Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185
49
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Polymender

* Generates a closed surface by computing and contouring an
intermediate volumetric grid denoting the inside/outside space of the
input model




Polymender

* Generates a closed surface by computing and contouring an
intermediate volumetric grid denoting the inside/outside space of the
input model

|
»

AN

Shape
Analysis




Polymender - overview

a) Input

b) Scan-conversion:
* rasterize model, and mark intersection edges.

c) Sign generation:
* so that each cell edge intersecting the model should exhibit a sigh change

d) Surface reconstruction

Jiu . § o
EEEEE RS S 9950 0 BN GEUERLGE:
T T leeesse

a b C d



Polymender — sign generation

e Each edge in dual surface (b, quads <-> intersection edges) must have
even number of incident quads

* Add/remove intersection edges in primal grid so that (1) holds
e Divide-and-conquer patching of odd-valence dual edges (c)




Polymender — Concluding remarks

* Polymender
* Extremely fast, lightweight and robust
* Any mesh

* Distortion everywhere
* Inaccuracy vs. triangle count

Input (65K faces) 12K 300K 6.8M

Tao Ju, (2004) “Robust Repair of polygonal models", ACM TOG Vol. 23 (SIGGRAPH 2004), pp. 888-895.
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TetWild

» Approximating the original input within& bound
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TetWild

» Approximating the original input within& bound

» Generating a valid mesh first, then optimizing its quality as much as possible

» Exact representation instead of floating precision



Mesh «in . Approx tet
TetWild

» Approximating the original input within& bound

» Generating a valid mesh first, then optimizing its quality as much as possible

V99

» Exact representation instead of floating precision




Mesh the approximated input

Input

(

Initial mesh

Hybrid mesh

Rational

Valid mesh

Optimized mesh
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Connectivity and Geometric Optimization



Inside-outside segmentation

Optimized mesh Output

L Mixed JL Double J

A. Jacobson, L. Kavan, O. Sorkine-Hornung (2013). Robust Inside-Outside Segmentation using Generalized
Winding Numbers. ACM TOG (Siggraph 2013)




TetWild — Concluding remarks

* TetWild
e Extremely robust
* Any mesh
* Distortion everywhere | T Ne———

2
TASZ R - Xy, 4%

* |naccuracy vs. triangle count

s
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o b3,
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Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, D. Panozzo. Tetrahedral Meshing in the Wild. ACM
TOG (SIGGRAPH 2018).
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Robust geometric
orogramming
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Euclidean space = infinitely many points

YOUR PAPER

m=(a+b)/2
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Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications
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Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications

exponent fraction
sign (11 bit) (52 bit)

(I ; o
Unit in the last place (or «of least precision») G}g

ULP(x) =b-a, st.a<x<b,azb,xeR, abeclf -

ULP(1) = 2752, ULP(252) = 1, ...
ULP(21023) = 2971 = 1,99584e+292




Impact on geometry

Load_bunny(vertices, faces);
double k = pow(2, e);

Point3 d(k, k, k);

for (Point3 v : vertices) v +=d;
Save_bunny(vertices, faces);
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Impact on geometry

// Using double precision
Load bunny(vertices, faces);
double k = pow(2, e);

Point3 d(k, k, k);

for (Point3 v : vertices) v +=d;

Save_bunny(vertices, faces);




Impact on program flow

orientation(p, q,r) = sign((qx — px)(ry — py) — (qy — py)(rx — px))

q (24, 24)
negative positive
. ‘.

o (0.5 + ¢z, 0.5 + ¢)

/" p (0.5, 0.5)



Impact on program flow

orientation(p,q,r) = Sig”((f}'x — P_,-.;)(f"y - P}*) - (‘}'y - py)(rx - F'x))

q (24, 24)
negative positive
. ‘.

E.g. broken invariant in incremental insertion



Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon
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Tolerances

Ok, so let’s consider p,q,r to be aligned if

|orientation(p,q,r)| < epsilon

No longer transitive!
collinear(a,b,c) && collinear(b,c,d) = collinear(a,b,d)

Must predict non-trivial
behaviour (hard coding)
Loose convergence

guarantees

Which epsilon?
Depends on coordinates
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Chee-Keng Yap
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Exact Geometric Computing

e Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, ...)
e 20 times slower (in controlled «test» conditions)
* 100 times slower (in practice, if naively used)

* Do we really need exactness everywhere?

* Floating point approximations can be tolerated...
* as long as they do not change the expected program flow

orientation(p,q,r)

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997 v
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Predicates and constructions

 Need exact constructions?
* NO =The program flow is exactly determined by input values only
e E.g. Delaunay triangulation

* YES = The program flow depends on «intermediate» values
e E.g. Mesh booleans

*p P
orientation in_circle intersection circumcenter



Approaches to geometric robustness

* |F no exact constructions needed
* «A la Shewchuk» predicates (1.6 times slower. Only algebraic functions)
* Interval arithmetic filters (3-8 times slower. More flexible)

* ELSE

e Lazy exact evaluation
 CGAL (20 times slower for reasonable construction depths)
* Hybrid arithmetic

* TMesh (3 times slower if constructions are sparse)
* Example app: TetWild



Arbitrary precision

* GNU GMP / MPIR
* int = type for integer numbers in the range [-INT_MAX, INT_MAX]

* Gmpz = type for arbitrarily large integer numbers
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Arbitrary precision

* GNU GMP / MPIR
* int = type for integer numbers in the range [-INT_MAX, INT_MAX]

* Gmpz = type for arbitrarily large integer numbers

e Avector of int
* Gmpg = type for rational numbers

* A pair of Gmpz = numerator/denominator
* Arbitrarily precise

n-1
N Z alk] » 232
k=0



Floating point expansions

e Used in Shewchuk’s predicates and in Levy’s Geogram
* double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]

* expansion = an arbitrarily precise floating point number
e Avector of double
* Not arbitrarily large. Overflows can still occur!

-1

N= ) flkl

=0

S

w



Floating point expansions

e Used in Shewchuk’s predicates and in Levy’s Geogram
* double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]

* expansion = an arbitrarily precise floating point number
e Avector of double
* Not arbitrarily large. Overflows can still occur!

1

S
|

No need to multiply by2*. Exponent
N = f[k] < is already in FP representation

w
I
o



Arithmetic on expansions

e Expansions can be summed, subtracted or multiplied
* Without any approximation error!

* Let |e| denote the «length» of an expansion e
* the number of double «components» to be summed to form N

A double is an expansion of length 1
* The result of arithmetic operations has bounded length

lep +ey | < |eq 4] eyl
le; —ey | < |eq| + e

ler x e; | < 2] eq| ]| ey



Geometric predicates with expansions

Orient2d, orient3d, orient4d, incircle, insphere, ...
Each of them is the sign of a (low degree) polynomial
e Thus involving only +, -, * operations
The sign of an expansion is the sign of its dominant component

Still too slow
* We do not need the polynomial to be exactly evaluated...
e ..aslong asits sign is correct
* Calculate using standard floating point arithmetic
* Switch to expansion arithmetic only if unsure



Filters

* Let D be the value of the polynomial calculated using plain
floating point arithmetic

* D has a correct sign if it is far enough from zero
* How far?




Filters

Fast/unprecise

 Sign(D) is correct if |D| >¢
 Various filtering approaches

* Static filter:
e ¢is constant and depends on the polynomial only
e + Can be precomputed once for all at compile time. Very efficient
* -Too pessimistic -> too many switches to exact computation
e - Assumption on the range of input values
* Almost static filter:
e ¢isinitialized based on optimistic assumptions
* |tis adjusted if necessary
* Dynamic filter

* ¢ depends on the actual accumulated rounding error based on the specific
input values

* + Extremely precise -> few switches to exact computation Slow/precise
* - Must be calculated at each call

* Multi-stage filters



Predicates in CGAL

Extremely flexible and generic
Precompute static filters
Compute predicate with floating point arithmetic
If result is uncertain (static filter fails):
Compute predicate with interval arithmetic (dynamic filter)

If result is uncertain (dynamic filter fails):
Compute predicate with arbitrary precision arithmetic

v




Shewchuk’s predicates

* One of the fastest approaches
* Uses adaptivity

1.
2.
3.

o U ok

7.

Evaluate polynomial using floating point arith
Use filter to check if precision is sufficient. If so, return

Increase precision (intermediate expansions) and re-use partial results
from (1)

Use 2nd stage filter. If precision sufficient, return
Increase precision and re-use partial results from (1) and (3)

If even last filter fails, switch to full expansion arithmetic and return

e Currently used in state-of-the-art 2D and 3D meshing software
* Triangle (J. R. Shewchuk)
« TetGEN (H. Si)



Expansions - summary

Extremely fast
Fully exploit FPU acceleration
Pure C code - do not require external libraries

Difficult to code

* Shewchuk’s predicates (orient2d, incircle, orient3d, insphere)
> 4200 lines of C code

Set of expansions is closed under +, -, * operations
only

* Proposals to support division (Priest), but limitation is
intrinsic due to possible infinite representations (e.g. 1/3)

 Suitable only if exact constructions are not necessary



Interval Arithmetic

* The smallest floating point interval containing a real number x (e.g. the
result of an operation)

e Can be a single value (if x € [F')

* The sign of a polynomial computed using intervals is certainly correct if
the interval does not contain the zero

* FPU rounding mode can be set to calculate tight intervals
* Provably efficient dynamic filter

LetaeR,and Ieta,beF.[a,b]={xeR:a£xsb}



Exact constructions

* Naive approach

Lazy number = interval and arithmetic Lazy object = approximated object and
 Use exact arithmetic expression tree geometric operation tree
* Lazy evaluation 4 ..
. . . + * )
* Arithmetic expressions (32+1.5)*13 X .
a

* Geometric expressions 52

"o @ m' (0. 1) {
@) /.\ p'(n,mﬂ

; N Lo/

Test that may trigger an exact re-evaluation:

wl—\/

N w

F(n<m) if (collinear(a',m',b"))

CGAL: :Lazy kernel<NT>



TMesh hybrid kernel — basic type

 What if exact constructions are needed at sparse spots only?

* Polymorphic number type PV Rational (alias coord)
* Internally, a PM Rational can be either a double or an exact rational number
e This underlying representation is called the «subtype» of the PM_Rational
* Interoperability is guaranteed and transparent

* Example:

* a,bandcareall PM Rational
The subtypes of ‘@’ and ‘b’ are double and rational respectively
The expression ¢ = a + b is valid
The subtype of ‘c’ depends on the current «precision level»
Precision level can be changed by the program at runtime



TMesh hybrid kernel

* Precision level
* Determines the subtype of newly created PVl Rationals
* Can be either «rational» or «floating point»
* Itis a program/thread state
Subtype (double or rational)
* Existing PM_Rational objects maintain their subtype
* The subtype of new objects depends on current precision level
* Result of a comparison/predicate
* Always exact, independently of the subtype of operands
* Speed depends on subtype of operands
e Result of a construction
* Constructions are arithmetic only
* Exact if current precision level is «rational»



Using TMesh in your program

 Download and compile TMesh
e https://github.com/MarcoAttene/TMesh Kernel

* Configure your program code to use TMesh
e paths to headers, static lib, program initialization

#include "tmesh kernel.h”
using namespace T _MESH;

int main()
{

TMesh::init(); // This is mandatory to correctly set up the FPU for exact computation


https://github.com/MarcoAttene/TMesh_Kernel

Using TMesh in your program

// The type 'coord' represents the basic hybrid number in TMesh.
// It can be handled as an IEEE 754 standard double in most cases.
coord @ X = 3.8;

coord q_y = 4.8;

coocrd @_z = 5.8;

// for example...
q_x += (9_y - 9_2);

// When necessary, the TMESH _TO DOUBLE macro approximates a coord to an actual double
double sgqrtex = sgqrt{ TMESH TO DOUBLE(qg v) );

// And a double can be seamlessly assigned to a coord
q z = sqritex;



Basic 3D geometry in TMesh

[/ A Point3c in TMesh is a triplet of coordinates, each having type '"coord’
// The following example shows how to manipulate points as wvectors

// Here we calculate the projection of 'p' on the plane by A, B and C
Point3c q(q %, 9 ¥, 9 _2);

Point3c A(8, @, 8);

Point3c B(2, @, @);

Point3c C(@, 2, @);

Point3c BA = B - A;
Point3c CA = C - A;
Point3c plane vec = BA & CA; // Operator '&" represents the cross product

// The previous three lines can be compacted into a single line as follows:
// Point3c plane vec = (B - A) & (C - A);

// Here we calculate the projection as the intersection of a straight line by
/{ q and orthogonal to the plane.

Point3c lifted q = q + plane wvec;

Point3c projected point = Point3c::linePlaneIntersection(q, lifted g, A, B, C);



Precision level and predicates

/! By default, TMesh works in floating point mode

/{ Declare four coplanar points

Point3c pl(5, 1, @);
Point3c p2(4, 2, 8);
Point3c p3(8, 1, 1);
Point3c p4(7, 2, 1);

// Predicates in TMesh are always exact - the following reports coplanarity as expected
// even if we work with fleating point coordinates

if (pl.exactOrientation(p2, p3, p4) == @) std::cout << "Points pi are coplanarin”;

else std::cout << "Points pi are not coplanarin™;

Points p1 are coplanar



Precision level and predicates

// We now create scaled copies of the pi's
int3c ql = pl1 [/ 3;
int3c g2 = p2 [/ 3;
int3c g3 = p3 / 3;
int3c g4 = p4 [/ 3;

L1 L1 L1

S Y i B

L1

/{ Coordinates in the gi's are not exact scales of those in the pi's because we are
// approximating them using floating point numbers

if (gl.exactOrientation(q2, g3, g4) == 8) std::cout << "Points gi are coplanarin”;
else std::cout << "Points gi are not coplanarin®;

Points p1 are coplanar

Points g1 are not coplanar



Precision level and predicates

[/ Now we switch to rational mode Points are coplanar

THeszh::useRationals(); Points are not coplanar
Points are coplanar

// We create other scaled copies of the pi's Points r1 are coplanar

Point3c rl = pl [/ 3;

Point3c r2 = p2 [/ 3;

Point3c r3 = p3 [/ 3;

Point3c rd4 = pd4 [ 3;

/{ Coordinates in the ri's are exact scales of those in the pi's because we are

// representing them using rational numbers

if (rl.exactOrientation(r2, r3, rd4) == @) std::cout << "Points ri are coplanarin”;
else std::cout << "Points ri are not coplanarin”;

/f Now we switch back to floating point mode
TMesh::useRationals(false);

// Ewven if we switched back to fleoating point, coordinates in the ri's are still
// rational numbers. That is why the following still reports coplanarity.

if (rl.exactOrientation(r2, r3, r4) == 8) std::cout << "Points ri are coplanarin”;
else std::cout << "Points ri are not coplanarin”;



Behind the scenes

* Multiple technologies are integrated in Tmesh
e Arithmetic Filtering
* Floating Point Expansions
* «a la Shewchuk» adaptive predicates
* Intervals
 Lazy evaluation (thread safe)

e Kernel may need to dynamically change FPU rounding mode



Predicate evaluation in TMesh

1. Check the subtype of all the parameters

2. IF all of them are double
1. Use «a la Shewchuk» adaptive evaluation

3. ELSE

1. Convert all parameters to intervals

2. Evaluate predicate using intervals

3. IF resulting interval contains zero
1. Convert all parameters to rational numbers
2. Evaluate predicate exactly

M. Attene (2017). ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel. LNCS Transactions on
Computational Science XXIX, Vol. 10220, pp. 86-96 (Springer)



Conclusions

To successfully implement a geometric algorithm
Carefully assess assumptions on input and numerical processes

* Invalid/unexpected input

e Can | reasonably repair the input to make it valid?

e Can | tolerate a small distortion everywhere?

* What class of models is my algorithm designed for?
* Inaccurate process

 If there are numerical errors, are they catastrophic?

* If so, do | need intermediate constructions to determine the program flow?
* If so, are these constructions sparse wrt the overall data to be processed?



Open Positions at IMATI-CNR

WHAT: 3D Shape Design and Analysis for Digital Fabrication

WHO: Myself and a vibrant research group

WHEN: Application deadline: Sept 13. Start: ~ mid October. Duration: 1-2 years
WHY: Because you love geometry processing and 3D printing

WHERE: Genova (Intl. Airport C. Colombo)

More at: www.imati.cnr.it -> opportunities
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Thank you

Time for questions

More at: www.imati.cnr.it -> opportunities

YAY!
IT WORKS!!!
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