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Many different definitions in literature, not
always compatible with each other
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Bridge the gap

Floating point arithmetic
Vertex coordinates can assume a finite number of 
different values
Example implication: 
m is probably not on L
m might be coincident to either a or b

Real-world models

YOUR CODEYOUR INPUT

Bad input -> Mesh checking/repairing
Weak code -> Robust programming



Mesh repairing



MOTIVATION

• Real world meshes often contain various 

defects, depending on their origin.

• But many applications assume ideal

meshes free from defects or flaws.

• Mesh Repairing adapts raw mesh models 

to specific application requirements.

12



MOTIVATION

• Complexity of the repair task is often underestimated by non-experts.
• A large difference between „looks good“ and „is good“

• Most repair algorithms focus on certain defect types and ignore or even 
introduce others.

13



Generic Mesh Repairing

• The general mesh repair problem is ill-posed
• Inherent ambiguities (topologic & geometric)

• Solution: application-specific context knowledge, heuristics, interactive user 
input ...

14



THE APPLICATION PERSPECTIVE

• Categorization of:
• Defect types

• Upstream applications
• based on typical characteristics/defects of produced meshes.

• Downstream applications
• based on typical requirements on consumed meshes.

• Repair approaches
• along with specific requirements and guarantees

15
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DEFECT TYPES

• Local connectivity
• Isolated vertices

• „A vertex that is not incident to any edge“

• Dangling edges
• „Edges without any incident triangles“

• Singular edges
• „Edges with more than two incident triangles“

• Singular vertices
• „Vertices with a non-disc neighborhood“

16



DEFECT TYPES

• Global topology
• Topological noise

• „Tiny spurious handles or tunnels“

• „Tiny disconnected components“

• „Unwanted cavities“

• Orientation
• „Incoherently oriented faces“

17



DEFECT TYPES

• Geometry
• Holes

• „Missing pieces within a surface“
• e.g. due to occlusions during capturing

• Gaps
• „Missing pieces between surfaces“

• e.g. due to inconsistent tessellation routines

• Cracks / T-Junctions

18



DEFECT TYPES

• Geometry
• Degenerate elements

• „Triangles with (near-)zero area“

• Self-intersections
• „Non-manifold geometric realization“

• Sharp feature chamfering
• „Aliasing artifacts due to sampling

pattern“

• Data noise
• „Additive noise due to measurement imprecision“

19



GENERAL POSITION

• Assume that points are in general position…

• What if they are not? 
• Can this be considered a defect?

• Geometric perturbation

• Symbolic perturbation

• Simulation of Simplicity
• Not really a repairing method (no change in geometry)

• May require repairing aftwerwards (e.g. degenerate elems)

20

H. Edelsbrunner, E. P. Mücke. 1990. Simulation of simplicity: a technique to cope with 
degenerate cases in geometric algorithms. ACM TOG 9, 1, 66-104.



UPSTREAM APPLICATIONS

• Upstream applications (or sources) characterized by:
• Nature

• (physical) real-world data <-> (virtual) concepts

• Approach
• … employed to convert data to polygon mesh

• Both aspects can be the source of defects and flaws.

21



UPSTREAM APPLICATIONS

• Nature
• Designed

• Basic concept is an abstraction

• Problems due to:
• Inaccuracies in the modeling process

• Inconsistencies in the description/representation

• Digitized
• Measurement of real-world phenomenon

• Problems due to:
• Measurement inaccuracies

• Measurement limitations

22



UPSTREAM APPLICATIONS

Nature

Digitized (physical) X X X X

Designed (virtual) X X x X
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UPSTREAM APPLICATIONS

Approach

Tessellation X X x

Depth image fusion X x x

Raster data contouring x X

Implicit function contouring x x X

Reconstruction from points x x x x

Height field triangulation

Solid model boundary extract. X
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DOWNSTREAM APPLICATIONS

• We consider prototypical requirements of a sample of the wide 
application spectrum

• Visualization

• Modeling

• Rapid Prototyping

• Processing

• Simulation

25



DOWNSTREAM APPLICATIONS

Application Group

Visualization x X x x

Modeling X X X x x

Rapid Prototyping X X X X

Processing X X X x X X x x

Simulation X X X X X X X x
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REPAIR APPROACHES

• We distinguish between two types:
• Local:

• Handling defects individually by local modifications.

• Low invasiveness, but only few guarantees.

• Global:
• Typically based on a complete remeshing.

• High robustness, but often loss of detail.

• More plausible ambiguity resolution possible.

27



STATE OF THE ART

• Algorithms exist to fix any individual defect discussed so far
• Ref to Attene, Campen, Kobbelt (2013) for comprehensive description

• A specific defect is rarely the only defect

• While fixing one, you may introduce another

• Need to carefully study repairing workflows and/or integrated
algorithms

28



SOME EXAMPLES

• MeshFIX
• extremely fast, lightweight and

robust
• raw digitized meshes
• may introduce macroscopic

distortions

• As-exact-as-possible STL fix
• Extremely precise and reasonably

fast
• designed meshes
• only outer geometry

29

• Polymender
• Extremely fast, lightweight and

robust
• Any mesh
• Distortion everywhere, large 

triangle count

• TetWild
• extremely robust
• any mesh
• Distortion everywhere, large 

triangle count, slow



MeshFIX - Raw digitized meshes

• We can assume that:
• Samples are rather uniformly spaced
• Model is densely sampled (opposed to sparse tessellated NURBS)

• Objective: 
• If an area is free of errors, keep it as it is

• What is the typical input?
• An indexed face set, possibly non manifold, self-intersecting, with 

degenerate faces, holes, …
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Digitized
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MeshFIX
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• Sequence of local approaches

• Creates a valid watertight polyhedral surface

• Works in two successive phases:
• Topology reconstruction

• Geometry correction

MeshFIX - repairing pipeline

31



Topology reconstruction

INPUT: ndexed face set (e.g. an OFF file)

1) Convert to an abstract simplicial complex

2) Convert the complex to a combinatorial manifold

3) Orient consistently (and possibly cut unorientable manifolds)

4) Remove spurious components

5) Fill holes

OUTPUT: a single combinatorial oriented manifold with no boundary

32



Simplicial Neighborhoods

• For the “geometry correction” phase, we make use of 
the notion of simplicial neighborhood

1) The simplicial neighborhood N(t) is the set of all the 
simplexes which share at least a vertex with the triangle ‘t’

2) The i’th order simplicial neighborhood Ni(t) is defined as
N(N(…N(N(t))…)), with ‘i’ nested levels

33



Geometry correction: step 1

• Remove (nearly) degenerate triangles

34



Geometry correction: step 2

• Remove intersecting triangles

35



Geometry correction: iteration

• While patching holes to remove self-intersections, new 
degenerate or nearly degenerate triangles may appear, 
and/or new intersections may be created

• So, after step 2 we check for degeneracies and 
intersections again and, if any, we repeat steps 1 and 2, 
until no more defects are left

• This is not guaranteed to converge, but it normally does
in practical cases

36



Example

37



MeshFIX – Concluding remarks

• MeshFIX
• extremely fast, lightweight and robust

• raw digitized meshes

• may introduce macroscopic distortions if
used on inappropriate models

38

Marco Attene. A lightweight approach to repair digitized polygon meshes.

The Visual Computer, 2010 



As-exact-as-possible repair for 3D printing

• Tessellated CAD models

• Typical input for slicers is STL

• The class of STL files is larger than the class of printable models
• There exist well-formed STLs that cannot be printed

• What are the conditions that make a model «printable»?

• How can we repair an unprintable STL to make it printable?



As-exact-as-possible repair for 3D printing

• Tessellated CAD models

• Typical input for slicers is STL

• The class of STL files is larger than the class of printable models
• There exist well-formed STLs that cannot be printed

• What are the conditions that make a model «printable»?

• How can we repair an unprintable STL to make it printable?

Designed
mesh

AEAP repair 3D printing



As-exact-as-possible

• What you see is what you get
• Assume that the artist wants the print to appear exactly as the rendered

model



As-exact-as-possible ≠ exact

• Artists may approximate thin parts by 
zero-thickness sheets of triangles

• But printers cannot extrude zero-
thickness material!

• If extrusion diameter is , we may turn 
our sheets to -thick solids



What is «printable»?

Definition. Printable STL

An STL model T is printable if there 
exists a T-induced mesh whose 
realization is a closed and manifold-
connected polyhedron that coincides 
with its outer hull.

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal, 
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185

https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185
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What is «printable»?

• A «sufficiently connected» solid
• No boundary

• No intersections

• No «occluded» parts
• Reachable from infinity

• Manifold-connected
• I.e. Still connected after removal of 

singular simplexes



Overview of the repairing process

Input STL: consider vertex position and triangles as the only reliable
information

• Ignore normals/orientation
• zero-thickness sheets <-> orientation?

Convert STL to printable STL
1. Convert to Euclidean Simplicial Complex

1. We shall omit «Euclidean» from now on

2. Simplicial complex to outer hull

3. Outer hull to printable solid (i.e. thicken possible sheets)



STL to Simplicial Complex

1. Unify coincident vertices

2. Remove zero area triangles

3. Remove duplicated triangles

4. Resolve intersections



STL to Simplicial Complex

1. Unify coincident vertices

2. Remove zero area triangles

3. Remove duplicated triangles

4. Resolve intersections

Definition
A simplicial complex K in Rn is a collection of simplices in Rn 

s.t.:
1. Every face of a simplex of K is in K
2. The intersection of any two simplices of K is a face of both



Simplicial Complex to outer hull

1. Each triangle has two sides

2. Select a seed triangle
1. Tag its «outer» side

3. Propagate the tag to adjacent triangles
1. Across edges only

2. Propagate on one triangle at each step
1. Across manifold edges: easy

2. Across boundary edges: double orientation

3. Across singular edges: select «outmost» triangles



Outer hull to printable solid

1. If there are no sheets
1. TERMINATE

2. Else
1. thicken the sheets

2. Resolve possible intersections
once again

3. Track the outer hull once again



Devil is in the details…

Resolving intersections

• If two simplexes intersect, create a new simplex representing the 
intersection and split

New coordinates
Floating point inaccuracy



As-exact-as-possible STL fix – Concluding remarks

• As-exact-as-possible STL fix
• Extremely precise and reasonably fast

• designed meshes

• only outer geometry

• Surface holes are not patched

49

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal, 
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185

https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185


Polymender

• Generates a closed surface by computing and contouring an 
intermediate volumetric grid denoting the inside/outside space of the 
input model
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Polygon
soup

PolyMender
Shape 

Analysis



Polymender - overview

a) Input

b) Scan-conversion:
• rasterize model, and mark intersection edges. 

c) Sign generation: 
• so that each cell edge intersecting the model should exhibit a sign change

d) Surface reconstruction



Polymender – sign generation

• Each edge in dual surface (b, quads <-> intersection edges) must have
even number of incident quads

• Add/remove intersection edges in primal grid so that (1) holds
• Divide-and-conquer patching of odd-valence dual edges (c)



Polymender – Concluding remarks

• Polymender
• Extremely fast, lightweight and robust

• Any mesh

• Distortion everywhere
• Inaccuracy vs. triangle count

Input (65K faces) 12K 300K 6.8M

Tao Ju, (2004) “Robust Repair of polygonal models", ACM TOG Vol. 23 (SIGGRAPH 2004), pp. 888-895.
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TetWild
Mesh «in 
the wild»

TetWild
Approx tet
meshing



Mesh the approximated input



Inside-outside segmentation
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A. Jacobson, L. Kavan, O. Sorkine-Hornung (2013). Robust Inside-Outside Segmentation using Generalized
Winding Numbers. ACM TOG (Siggraph 2013)



• TetWild
• Extremely robust

• Any mesh

• Slow

• Distortion everywhere
• Inaccuracy vs. triangle count

TetWild – Concluding remarks

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, D. Panozzo. Tetrahedral Meshing in the Wild. ACM 

TOG (SIGGRAPH 2018).
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Euclidean space = infinitely many points
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Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications
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Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications

Unit in the last place (or «of least precision»)
ULP(x) = b-a,    s.t. a ≤ x ≤ b, a ≠ b, x  , a,b 

ULP(1) = 2-52, ULP(252) = 1, …
ULP(21023) = 2971 = 1.99584e+292



Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);
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Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0e = 40e = 45e = 49
Only a += operation here
No error accumulation!!!



Impact on program flow

negative zero positive



Impact on program flow

negative zero positive

E.g. broken invariant in incremental insertion
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Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon 

No longer transitive!
collinear(a,b,c) && collinear(b,c,d)  collinear(a,b,d)

• Must predict non-trivial
behaviour (hard coding)

• Loose convergence
guarantees

• Which epsilon?
• Depends on coordinates
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Exact Geometric Computing

• Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, …)
• 20 times slower (in controlled «test» conditions)
• 100 times slower (in practice, if naively used)

• Do we really need exactness everywhere?
• Floating point approximations can be tolerated…

• as long as they do not change the expected program flow

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997

<0 >0

=0

orientation(p,q,r)t
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Predicates and constructions

• Need exact constructions?
• NO = The program flow is exactly determined by input values only

• E.g. Delaunay triangulation

• YES = The program flow depends on «intermediate» values
• E.g. Mesh booleans

orientation              in_circle intersection          circumcenter



Approaches to geometric robustness

• IF no exact constructions needed
• «A la Shewchuk» predicates (1.6 times slower. Only algebraic functions)

• Interval arithmetic filters (3-8 times slower. More flexible)

• ELSE
• Lazy exact evaluation

• CGAL (20 times slower for reasonable construction depths)

• Hybrid arithmetic
• TMesh (3 times slower if constructions are sparse)

• Example app: TetWild



Arbitrary precision

• GNU GMP / MPIR
• int = type for integer numbers in the range [-INT_MAX, INT_MAX]

• Gmpz = type for arbitrarily large integer numbers
• A vector of int

a[0]a[1]a[2]a[3]…

𝑁 = 

𝑘=0
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𝑎 𝑘 ∗ 232𝑘



Arbitrary precision

• GNU GMP / MPIR
• int = type for integer numbers in the range [-INT_MAX, INT_MAX]

• Gmpz = type for arbitrarily large integer numbers
• A vector of int

a[0]a[1]a[2]a[3]…

𝑁 = 

𝑘=0

𝑛−1

𝑎 𝑘 ∗ 232𝑘

• Gmpq = type for rational numbers
• A pair of Gmpz = numerator/denominator

• Arbitrarily precise
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• double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]
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Floating point expansions

• Used in Shewchuk’s predicates and in Levy’s Geogram
• double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]

• expansion = an arbitrarily precise floating point number
• A vector of double

• Not arbitrarily large. Overflows can still occur!

f[0]f[1]f[2]f[3]…

𝑁 = 

𝑘=0

𝑛−1

𝑓 𝑘
No need to multiply by2x. Exponent
is already in FP representation



Arithmetic on expansions

• Expansions can be summed, subtracted or multiplied
• Without any approximation error!

• Let |e| denote the «length» of an expansion e
• the number of double «components» to be summed to form N

• A double is an expansion of length 1

• The result of arithmetic operations has bounded length

| 𝑒1 + 𝑒2 | ≤ | 𝑒1| +| 𝑒2|

| 𝑒1 − 𝑒2 | ≤ | 𝑒1| +| 𝑒2|

| 𝑒1 ∗ 𝑒2 | ≤ 2| 𝑒1| | 𝑒2|

𝑁 = 

𝑘=0

𝑛−1

𝑓 𝑘



Geometric predicates with expansions

• Orient2d, orient3d, orient4d, incircle, insphere, …

• Each of them is the sign of a (low degree) polynomial
• Thus involving only +, -, * operations

• The sign of an expansion is the sign of its dominant component

• Still too slow
• We do not need the polynomial to be exactly evaluated…

• …as long as its sign is correct

• Calculate using standard floating point arithmetic
• Switch to expansion arithmetic only if unsure



Filters

• Let D be the value of the polynomial calculated using plain
floating point arithmetic

• D has a correct sign if it is far enough from zero
• How far?



Filters

• Sign(D) is correct if |D| > 

• Various filtering approaches
• Static filter: 

•  is constant and depends on the polynomial only

• + Can be precomputed once for all at compile time. Very efficient

• - Too pessimistic -> too many switches to exact computation

• - Assumption on the range of input values

• Almost static filter:

•  is initialized based on optimistic assumptions

• It is adjusted if necessary

• Dynamic filter

•  depends on the actual accumulated rounding error based on the specific
input values

• + Extremely precise -> few switches to exact computation

• - Must be calculated at each call

• Multi-stage filters

Fast/unprecise

Slow/precise



Predicates in CGAL

• Extremely flexible and generic

• Precompute static filters

• Compute predicate with floating point arithmetic

• If result is uncertain (static filter fails):

Compute predicate with interval arithmetic (dynamic filter)

• If result is uncertain (dynamic filter fails):
Compute predicate with arbitrary precision arithmetic



Shewchuk’s predicates

• One of the fastest approaches

• Uses adaptivity
1. Evaluate polynomial using floating point arith

2. Use filter to check if precision is sufficient. If so, return

3. Increase precision (intermediate expansions) and re-use partial results
from (1)

4. Use 2nd stage filter. If precision sufficient, return

5. Increase precision and re-use partial results from (1) and (3)

6. …

7. If even last filter fails, switch to full expansion arithmetic and return

• Currently used in state-of-the-art 2D and 3D meshing software
• Triangle (J. R. Shewchuk)

• TetGEN (H. Si)



Expansions - summary

• Extremely fast

• Fully exploit FPU acceleration

• Pure C code - do not require external libraries

• Difficult to code
• Shewchuk’s predicates (orient2d, incircle, orient3d, insphere) 

> 4200 lines of C code

• Set of expansions is closed under +, -, * operations
only

• Proposals to support division (Priest), but limitation is
intrinsic due to possible infinite representations (e.g. 1/3)

• Suitable only if exact constructions are not necessary



Interval Arithmetic

• The smallest floating point interval containing a real number x (e.g. the 
result of an operation)

• Can be a single value (if x  )

• The sign of a polynomial computed using intervals is certainly correct if
the interval does not contain the zero

• FPU rounding mode can be set to calculate tight intervals

• Provably efficient dynamic filter

Let a  , and let a,b  . [a,b] = {x  : a ≤ x ≤ b}



Exact constructions

• Naive approach
• Use exact arithmetic

• Lazy evaluation
• Arithmetic expressions

• Geometric expressions

[]

+

*

[]

3.
2

1.
5

1
3

if (collinear(a',m',b'))
if ( n' < m' )

midpoint

intersect projection

([], [])

([], [])([], []) ([], [])

bs1
s2 l

m'

i' p'

p

a

s1

s2

l

m

i

b

n'

Lazy number = interval and arithmetic 

expression tree

Lazy object = approximated object and 

geometric operation tree

Test that may trigger an exact re-evaluation:

(3.2 + 1.5) * 13

CGAL::Lazy_kernel<NT>



TMesh hybrid kernel – basic type

• What if exact constructions are needed at sparse spots only?

• Polymorphic number type PM_Rational (alias coord)
• Internally, a PM_Rational can be either a double or an exact rational number

• This underlying representation is called the «subtype» of the PM_Rational

• Interoperability is guaranteed and transparent

• Example: 
• a, b and c are all PM_Rational

• The subtypes of ‘a’ and ‘b’ are double and rational respectively

• The expression c = a + b is valid

• The subtype of ‘c’ depends on the current «precision level»

• Precision level can be changed by the program at runtime



TMesh hybrid kernel

• Precision level
• Determines the subtype of newly created PM_Rationals

• Can be either «rational» or «floating point»

• It is a program/thread state

• Subtype (double or rational)
• Existing PM_Rational objects maintain their subtype

• The subtype of new objects depends on current precision level

• Result of a comparison/predicate
• Always exact, independently of the subtype of operands

• Speed depends on subtype of operands

• Result of a construction
• Constructions are arithmetic only

• Exact if current precision level is «rational»



Using TMesh in your program

• Download and compile TMesh
• https://github.com/MarcoAttene/TMesh_Kernel

• Configure your program code to use TMesh
• paths to headers, static lib, program initialization

https://github.com/MarcoAttene/TMesh_Kernel


Using TMesh in your program



Basic 3D geometry in TMesh



Precision level and predicates
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Behind the scenes

• Multiple technologies are integrated in Tmesh
• Arithmetic Filtering

• Floating Point Expansions

• «a la Shewchuk» adaptive predicates

• Intervals

• Lazy evaluation (thread safe)

• Kernel may need to dynamically change FPU rounding mode



Predicate evaluation in TMesh

1. Check the subtype of all the parameters

2. IF all of them are double
1. Use «a la Shewchuk» adaptive evaluation

3. ELSE
1. Convert all parameters to intervals

2. Evaluate predicate using intervals

3. IF resulting interval contains zero

1. Convert all parameters to rational numbers

2. Evaluate predicate exactly

M. Attene (2017). ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel. LNCS Transactions on 
Computational Science XXIX, Vol. 10220, pp. 86-96 (Springer)



Conclusions

To successfully implement a geometric algorithm

Carefully assess assumptions on input and numerical processes

• Invalid/unexpected input
• Can I reasonably repair the input to make it valid?

• Can I tolerate a small distortion everywhere?

• What class of models is my algorithm designed for?

• Inaccurate process
• If there are numerical errors, are they catastrophic?

• If so, do I need intermediate constructions to determine the program flow?

• If so, are these constructions sparse wrt the overall data to be processed?



Open Positions at IMATI-CNR

• WHAT: 3D Shape Design and Analysis for Digital Fabrication

• WHO: Myself and a vibrant research group

• WHEN: Application deadline: Sept 13. Start: ~ mid October. Duration: 1-2 years

• WHY: Because you love geometry processing and 3D printing

• WHERE: Genova (Intl. Airport C. Colombo)

More at: www.imati.cnr.it -> opportunities

http://www.imati.cnr.it/
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