
Reliable and efficient mesh
processing

Marco Attene

CNR – IMATI Genova

The CNR is the largest public research

institution in Italy.

Mission: to perform, transfer and enhance

research activities, to promote innovation and

competitiveness of the national industrial

system, to promote the internationalization of

the national research system, to provide

technologies and solutions to emerging

public and private needs.

The scientific network:

105 Institutes,

7 Departments

17 Research Areas,

8.000 employees

The National Research
Council (CNR)

The Institute for Applied Mathematics and

Information Technologies "Enrico Magenes"

performs research in many areas of

mathematics, computer science and their

applications.

Three units:

• Pavia: differential modeling and PDEs

• Milano: Stochastic Modeling and Data

analysis

• Genova: Shape and Semanitics Modeling,

Computing Architectures and HPC

The Institute for Applied Mathematics and

Information Technologies "Enrico Magenes"

performs research in many areas of

mathematics, computer science and their

applications.

Three units:

• Pavia: differential modeling and PDEs

• Milano: Stochastic Modeling and Data

analysis

• Genova: Shape and Semanitics Modeling,

Computing Architectures and HPC

Outline

• Geometric algorithm implementation – potential pitfalls

• Mesh repairing

• Robust geometric programming

• Libraries and paradigms

• Conclusions

Geometric Algorithm Implementation

Geometric Algorithm Implementation

Geometric Algorithm Implementation

Geometric Algorithm Implementation

Geometric Algorithm Implementation

Geometric Algorithm Implementation

But, in real world…

But, in real world…

But, in real world…

But, in real world…

But, in real world…

But, in real world…

But, in real world…

But, in real world…

OK.
Let’s try with another one…

But, in real world…

OK.
Let’s try with another one…

But, in real world…

OK.
Let’s try with another one…

But, in real world…

OK.
Let’s try with another one…

But, in real world…

OK.
Let’s try with another one…

Ok, let’s restart from the beginning

Let M be a triangle mesh…

Ok, let’s restart from the beginning

Let M be a triangle mesh…

Many different definitions in literature, not
always compatible with each other

Is a triangle mesh a simplicial complex ?

Is a triangle mesh a simplicial complex ?

• For most authors/papers, the answer is YES
• Sometimes this is an implicit assumption

Is a triangle mesh a simplicial complex ?

• For most authors/papers, the answer is YES
• Sometimes this is an implicit assumption

• More precisely, an Euclidean simplicial complex
• Not to be confused with an abstract simplicial complex

Is a triangle mesh a simplicial complex ?

• For most authors/papers, the answer is YES
• Sometimes this is an implicit assumption

• More precisely, an Euclidean simplicial complex
• Not to be confused with an abstract simplicial complex

• Possible additional reqs:
• 2-manifold, no boundary, genus 0, …

Is a triangle mesh a simplicial complex ?

• For most authors/papers, the answer is YES
• Sometimes this is an implicit assumption

• More precisely, an Euclidean simplicial complex
• Not to be confused with an abstract simplicial complex

• Possible additional reqs:
• 2-manifold, no boundary, genus 0, …

Definition
A simplicial complex K in Rn is a collection of simplices in Rn

s.t.:
1. Every face of a simplex of K is in K
2. The intersection of any two simplices of K is a face of both

Is a triangle mesh a simplicial complex ?

• For most authors/papers, the answer is YES
• Sometimes this is an implicit assumption

• More precisely, an Euclidean simplicial complex
• Not to be confused with an abstract simplicial complex

• Possible additional reqs:
• 2-manifold, no boundary, genus 0, …

Definition
A simplicial complex K in Rn is a collection of simplices in Rn

s.t.:
1. Every face of a simplex of K is in K
2. The intersection of any two simplices of K is a face of both

Euclidean Simplicial Complex

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

YO
U

R
 P

A
P

ER

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

YO
U

R
 P

A
P

ER

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

YO
U

R
 P

A
P

ER

YOUR CODE

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

Real-world models

YO
U

R
 P

A
P

ER

YOUR CODE

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

Real-world models

YO
U

R
 P

A
P

ER

YOUR CODE YOUR INPUT

Euclidean Simplicial Complex

Euclidean
Vertex positions are 3D points with real coordinates.
Example implication:
for any two different points a and b on a straight
line L, their midpoint m=(a+b)/2 is also on L and is
different from both a and b

Simplicial Complex
No intersections allowed, no degenerate
triangles, no T-junctions, …

Possible additional requirements
2-manifold, no boundary, genus 0, …

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

Real-world models

YO
U

R
 P

A
P

ER

YOUR CODE YOUR INPUT

Bridge the gap

Floating point arithmetic
Vertex coordinates can assume a finite number of
different values
Example implication:
m is probably not on L
m might be coincident to either a or b

Real-world models

YOUR CODEYOUR INPUT

Bad input -> Mesh checking/repairing
Weak code -> Robust programming

Mesh repairing

MOTIVATION

• Real world meshes often contain various

defects, depending on their origin.

• But many applications assume ideal

meshes free from defects or flaws.

• Mesh Repairing adapts raw mesh models

to specific application requirements.

12

MOTIVATION

• Complexity of the repair task is often underestimated by non-experts.
• A large difference between „looks good“ and „is good“

• Most repair algorithms focus on certain defect types and ignore or even
introduce others.

13

Generic Mesh Repairing

• The general mesh repair problem is ill-posed
• Inherent ambiguities (topologic & geometric)

• Solution: application-specific context knowledge, heuristics, interactive user
input ...

14

THE APPLICATION PERSPECTIVE

• Categorization of:
• Defect types

• Upstream applications
• based on typical characteristics/defects of produced meshes.

• Downstream applications
• based on typical requirements on consumed meshes.

• Repair approaches
• along with specific requirements and guarantees

15

Marco Attene, Marcel Campen and Leif Kobbelt. Polygon Mesh Repairing: an application perspective

ACM Computing Surveys, 2013

THE APPLICATION PERSPECTIVE

• Categorization of:
• Defect types

• Upstream applications
• based on typical characteristics/defects of produced meshes.

• Downstream applications
• based on typical requirements on consumed meshes.

• Repair approaches
• along with specific requirements and guarantees

15

Marco Attene, Marcel Campen and Leif Kobbelt. Polygon Mesh Repairing: an application perspective

ACM Computing Surveys, 2013

Upstream
app

Repairing
algo

Downstream
app

DEFECT TYPES

• Local connectivity
• Isolated vertices

• „A vertex that is not incident to any edge“

• Dangling edges
• „Edges without any incident triangles“

• Singular edges
• „Edges with more than two incident triangles“

• Singular vertices
• „Vertices with a non-disc neighborhood“

16

DEFECT TYPES

• Global topology
• Topological noise

• „Tiny spurious handles or tunnels“

• „Tiny disconnected components“

• „Unwanted cavities“

• Orientation
• „Incoherently oriented faces“

17

DEFECT TYPES

• Geometry
• Holes

• „Missing pieces within a surface“
• e.g. due to occlusions during capturing

• Gaps
• „Missing pieces between surfaces“

• e.g. due to inconsistent tessellation routines

• Cracks / T-Junctions

18

DEFECT TYPES

• Geometry
• Degenerate elements

• „Triangles with (near-)zero area“

• Self-intersections
• „Non-manifold geometric realization“

• Sharp feature chamfering
• „Aliasing artifacts due to sampling

pattern“

• Data noise
• „Additive noise due to measurement imprecision“

19

GENERAL POSITION

• Assume that points are in general position…

• What if they are not?
• Can this be considered a defect?

• Geometric perturbation

• Symbolic perturbation

• Simulation of Simplicity
• Not really a repairing method (no change in geometry)

• May require repairing aftwerwards (e.g. degenerate elems)

20

H. Edelsbrunner, E. P. Mücke. 1990. Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM TOG 9, 1, 66-104.

UPSTREAM APPLICATIONS

• Upstream applications (or sources) characterized by:
• Nature

• (physical) real-world data <-> (virtual) concepts

• Approach
• … employed to convert data to polygon mesh

• Both aspects can be the source of defects and flaws.

21

UPSTREAM APPLICATIONS

• Nature
• Designed

• Basic concept is an abstraction

• Problems due to:
• Inaccuracies in the modeling process

• Inconsistencies in the description/representation

• Digitized
• Measurement of real-world phenomenon

• Problems due to:
• Measurement inaccuracies

• Measurement limitations

22

UPSTREAM APPLICATIONS

Nature

Digitized (physical) X X X X

Designed (virtual) X X x X

n
o

is
e

h
o

le
s

g
a
p

s

in
te

rs
e
ct

io
n

s

d
e
g

e
n

e
ra

ci
e
s

si
n

g
u

la
ri

ti
e
s

to
p

o
lo

g
.
n

o
is

e

a
li
a
si

n
g

23

UPSTREAM APPLICATIONS

Approach

Tessellation X X x

Depth image fusion X x x

Raster data contouring x X

Implicit function contouring x x X

Reconstruction from points x x x x

Height field triangulation

Solid model boundary extract. X

n
o

is
e

h
o

le
s

g
a
p

s

in
te

rs
e
ct

io
n

s

d
e
g

e
n

e
ra

ci
e
s

si
n

g
u

la
ri

ti
e
s

to
p

o
lo

g
.
n

o
is

e

a
li
a
si

n
g

24

DOWNSTREAM APPLICATIONS

• We consider prototypical requirements of a sample of the wide
application spectrum

• Visualization

• Modeling

• Rapid Prototyping

• Processing

• Simulation

25

DOWNSTREAM APPLICATIONS

Application Group

Visualization x X x x

Modeling X X X x x

Rapid Prototyping X X X X

Processing X X X x X X x x

Simulation X X X X X X X x

n
o

is
e

h
o

le
s

g
a
p

s

in
te

rs
e
ct

io
n

s

d
e
g

e
n

e
ra

ci
e
s

si
n

g
u

la
ri

ti
e
s

to
p

o
lo

g
.
n

o
is

e

a
li
a
si

n
g

26

REPAIR APPROACHES

• We distinguish between two types:
• Local:

• Handling defects individually by local modifications.

• Low invasiveness, but only few guarantees.

• Global:
• Typically based on a complete remeshing.

• High robustness, but often loss of detail.

• More plausible ambiguity resolution possible.

27

STATE OF THE ART

• Algorithms exist to fix any individual defect discussed so far
• Ref to Attene, Campen, Kobbelt (2013) for comprehensive description

• A specific defect is rarely the only defect

• While fixing one, you may introduce another

• Need to carefully study repairing workflows and/or integrated
algorithms

28

SOME EXAMPLES

• MeshFIX
• extremely fast, lightweight and

robust
• raw digitized meshes
• may introduce macroscopic

distortions

• As-exact-as-possible STL fix
• Extremely precise and reasonably

fast
• designed meshes
• only outer geometry

29

• Polymender
• Extremely fast, lightweight and

robust
• Any mesh
• Distortion everywhere, large

triangle count

• TetWild
• extremely robust
• any mesh
• Distortion everywhere, large

triangle count, slow

MeshFIX - Raw digitized meshes

• We can assume that:
• Samples are rather uniformly spaced
• Model is densely sampled (opposed to sparse tessellated NURBS)

• Objective:
• If an area is free of errors, keep it as it is

• What is the typical input?
• An indexed face set, possibly non manifold, self-intersecting, with

degenerate faces, holes, …

30

MeshFIX - Raw digitized meshes

• We can assume that:
• Samples are rather uniformly spaced
• Model is densely sampled (opposed to sparse tessellated NURBS)

• Objective:
• If an area is free of errors, keep it as it is

• What is the typical input?
• An indexed face set, possibly non manifold, self-intersecting, with

degenerate faces, holes, …

30

Digitized
mesh

MeshFIX
Precise tet
meshing

• Sequence of local approaches

• Creates a valid watertight polyhedral surface

• Works in two successive phases:
• Topology reconstruction

• Geometry correction

MeshFIX - repairing pipeline

31

Topology reconstruction

INPUT: ndexed face set (e.g. an OFF file)

1) Convert to an abstract simplicial complex

2) Convert the complex to a combinatorial manifold

3) Orient consistently (and possibly cut unorientable manifolds)

4) Remove spurious components

5) Fill holes

OUTPUT: a single combinatorial oriented manifold with no boundary

32

Simplicial Neighborhoods

• For the “geometry correction” phase, we make use of
the notion of simplicial neighborhood

1) The simplicial neighborhood N(t) is the set of all the
simplexes which share at least a vertex with the triangle ‘t’

2) The i’th order simplicial neighborhood Ni(t) is defined as
N(N(…N(N(t))…)), with ‘i’ nested levels

33

Geometry correction: step 1

• Remove (nearly) degenerate triangles

34

Geometry correction: step 2

• Remove intersecting triangles

35

Geometry correction: iteration

• While patching holes to remove self-intersections, new
degenerate or nearly degenerate triangles may appear,
and/or new intersections may be created

• So, after step 2 we check for degeneracies and
intersections again and, if any, we repeat steps 1 and 2,
until no more defects are left

• This is not guaranteed to converge, but it normally does
in practical cases

36

Example

37

MeshFIX – Concluding remarks

• MeshFIX
• extremely fast, lightweight and robust

• raw digitized meshes

• may introduce macroscopic distortions if
used on inappropriate models

38

Marco Attene. A lightweight approach to repair digitized polygon meshes.

The Visual Computer, 2010

As-exact-as-possible repair for 3D printing

• Tessellated CAD models

• Typical input for slicers is STL

• The class of STL files is larger than the class of printable models
• There exist well-formed STLs that cannot be printed

• What are the conditions that make a model «printable»?

• How can we repair an unprintable STL to make it printable?

As-exact-as-possible repair for 3D printing

• Tessellated CAD models

• Typical input for slicers is STL

• The class of STL files is larger than the class of printable models
• There exist well-formed STLs that cannot be printed

• What are the conditions that make a model «printable»?

• How can we repair an unprintable STL to make it printable?

Designed
mesh

AEAP repair 3D printing

As-exact-as-possible

• What you see is what you get
• Assume that the artist wants the print to appear exactly as the rendered

model

As-exact-as-possible ≠ exact

• Artists may approximate thin parts by
zero-thickness sheets of triangles

• But printers cannot extrude zero-
thickness material!

• If extrusion diameter is , we may turn
our sheets to -thick solids

What is «printable»?

Definition. Printable STL

An STL model T is printable if there
exists a T-induced mesh whose
realization is a closed and manifold-
connected polyhedron that coincides
with its outer hull.

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal,
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185

https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185

What is «printable»?

Definition. Printable STL

An STL model T is printable if there
exists a T-induced mesh whose
realization is a closed and manifold-
connected polyhedron that coincides
with its outer hull.

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal,
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185

https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185

What is «printable»?

• A «sufficiently connected» solid
• No boundary

• No intersections

• No «occluded» parts
• Reachable from infinity

• Manifold-connected
• I.e. Still connected after removal of

singular simplexes

Overview of the repairing process

Input STL: consider vertex position and triangles as the only reliable
information

• Ignore normals/orientation
• zero-thickness sheets <-> orientation?

Convert STL to printable STL
1. Convert to Euclidean Simplicial Complex

1. We shall omit «Euclidean» from now on

2. Simplicial complex to outer hull

3. Outer hull to printable solid (i.e. thicken possible sheets)

STL to Simplicial Complex

1. Unify coincident vertices

2. Remove zero area triangles

3. Remove duplicated triangles

4. Resolve intersections

STL to Simplicial Complex

1. Unify coincident vertices

2. Remove zero area triangles

3. Remove duplicated triangles

4. Resolve intersections

Definition
A simplicial complex K in Rn is a collection of simplices in Rn

s.t.:
1. Every face of a simplex of K is in K
2. The intersection of any two simplices of K is a face of both

Simplicial Complex to outer hull

1. Each triangle has two sides

2. Select a seed triangle
1. Tag its «outer» side

3. Propagate the tag to adjacent triangles
1. Across edges only

2. Propagate on one triangle at each step
1. Across manifold edges: easy

2. Across boundary edges: double orientation

3. Across singular edges: select «outmost» triangles

Outer hull to printable solid

1. If there are no sheets
1. TERMINATE

2. Else
1. thicken the sheets

2. Resolve possible intersections
once again

3. Track the outer hull once again

Devil is in the details…

Resolving intersections

• If two simplexes intersect, create a new simplex representing the
intersection and split

New coordinates
Floating point inaccuracy

As-exact-as-possible STL fix – Concluding remarks

• As-exact-as-possible STL fix
• Extremely precise and reasonably fast

• designed meshes

• only outer geometry

• Surface holes are not patched

49

Marco Attene, (2018) "As-exact-as-possible repair of unprintable STL files", Rapid Prototyping Journal,
Vol. 24 Issue: 5, pp.855-864, https://doi.org/10.1108/RPJ-11-2016-0185

https://www.emeraldinsight.com/author/Attene%2C+Marco
https://doi.org/10.1108/RPJ-11-2016-0185

Polymender

• Generates a closed surface by computing and contouring an
intermediate volumetric grid denoting the inside/outside space of the
input model

Polymender

• Generates a closed surface by computing and contouring an
intermediate volumetric grid denoting the inside/outside space of the
input model

Polygon
soup

PolyMender
Shape

Analysis

Polymender - overview

a) Input

b) Scan-conversion:
• rasterize model, and mark intersection edges.

c) Sign generation:
• so that each cell edge intersecting the model should exhibit a sign change

d) Surface reconstruction

Polymender – sign generation

• Each edge in dual surface (b, quads <-> intersection edges) must have
even number of incident quads

• Add/remove intersection edges in primal grid so that (1) holds
• Divide-and-conquer patching of odd-valence dual edges (c)

Polymender – Concluding remarks

• Polymender
• Extremely fast, lightweight and robust

• Any mesh

• Distortion everywhere
• Inaccuracy vs. triangle count

Input (65K faces) 12K 300K 6.8M

Tao Ju, (2004) “Robust Repair of polygonal models", ACM TOG Vol. 23 (SIGGRAPH 2004), pp. 888-895.

Polymender – Concluding remarks

• Polymender
• Extremely fast, lightweight and robust

• Any mesh

• Distortion everywhere
• Inaccuracy vs. triangle count

Input (65K faces) 12K 300K 6.8M

Tao Ju, (2004) “Robust Repair of polygonal models", ACM TOG Vol. 23 (SIGGRAPH 2004), pp. 888-895.

Polymender – Concluding remarks

• Polymender
• Extremely fast, lightweight and robust

• Any mesh

• Distortion everywhere
• Inaccuracy vs. triangle count

Input (65K faces) 12K 300K 6.8M

Tao Ju, (2004) “Robust Repair of polygonal models", ACM TOG Vol. 23 (SIGGRAPH 2004), pp. 888-895.

TetWild

TetWild

TetWild

TetWild

TetWild
Mesh «in
the wild»

TetWild
Approx tet
meshing

Mesh the approximated input

Inside-outside segmentation

0
1

0
1

2

0

1

1

2

-

1

A. Jacobson, L. Kavan, O. Sorkine-Hornung (2013). Robust Inside-Outside Segmentation using Generalized
Winding Numbers. ACM TOG (Siggraph 2013)

• TetWild
• Extremely robust

• Any mesh

• Slow

• Distortion everywhere
• Inaccuracy vs. triangle count

TetWild – Concluding remarks

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, D. Panozzo. Tetrahedral Meshing in the Wild. ACM

TOG (SIGGRAPH 2018).

Robust geometric
programming

Robust geometric
programming

Euclidean space = infinitely many points

a

b

m=(a+b)/2

m2

YOUR PAPER

m

Finitely many points

a

b

m=(a+b)/2

2

m

Finitely many points

a

b

m=(a+b)/2

2

YOUR CODE

Finitely many points

a

b

m=(a+b)/2

2

YOUR CODE

Finitely many points

a

b

m=(a+b)/2

2 m

YOUR CODE

Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications

Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications

Machine precision (IEEE-754)

Sure, but that is a pathological case! Points are not
that close to each other in normal applications

Unit in the last place (or «of least precision»)
ULP(x) = b-a, s.t. a ≤ x ≤ b, a ≠ b, x  , a,b 

ULP(1) = 2-52, ULP(252) = 1, …
ULP(21023) = 2971 = 1.99584e+292

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0e = 40

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0e = 40e = 45

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0e = 40e = 45e = 49

Impact on geometry

Point3 d(k, k, k);

for (Point3 v : vertices) v += d;

Save_bunny(vertices, faces);

// Using double precision

Load_bunny(vertices, faces);

double k = pow(2, e);

e = 0e = 40e = 45e = 49
Only a += operation here
No error accumulation!!!

Impact on program flow

negative zero positive

Impact on program flow

negative zero positive

E.g. broken invariant in incremental insertion

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

No longer transitive!
collinear(a,b,c) && collinear(b,c,d)  collinear(a,b,d)

Tolerances

Ok, so let’s consider p,q,r to be aligned if
|orientation(p,q,r)| < epsilon

No longer transitive!
collinear(a,b,c) && collinear(b,c,d)  collinear(a,b,d)

• Must predict non-trivial
behaviour (hard coding)

• Loose convergence
guarantees

• Which epsilon?
• Depends on coordinates

Exact Geometric Computing

• Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, …)

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997

Exact Geometric Computing

• Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, …)
• 20 times slower (in controlled «test» conditions)

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997

Exact Geometric Computing

• Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, …)
• 20 times slower (in controlled «test» conditions)
• 100 times slower (in practice, if naively used)

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997

Exact Geometric Computing

• Use exact numbers instead of floats (e.g. GNU GMP, MPIR, LEDA, …)
• 20 times slower (in controlled «test» conditions)
• 100 times slower (in practice, if naively used)

• Do we really need exactness everywhere?
• Floating point approximations can be tolerated…

• as long as they do not change the expected program flow

Chee-Keng Yap
Towards exact geometric computation
Computational Geometry 7(1-2), 1997

<0 >0

=0

orientation(p,q,r)t

Predicates and constructions

Predicates and constructions

• Need exact constructions?
• NO = The program flow is exactly determined by input values only

• E.g. Delaunay triangulation

• YES = The program flow depends on «intermediate» values
• E.g. Mesh booleans

Predicates and constructions

• Need exact constructions?
• NO = The program flow is exactly determined by input values only

• E.g. Delaunay triangulation

• YES = The program flow depends on «intermediate» values
• E.g. Mesh booleans

orientation in_circle intersection circumcenter

Approaches to geometric robustness

• IF no exact constructions needed
• «A la Shewchuk» predicates (1.6 times slower. Only algebraic functions)

• Interval arithmetic filters (3-8 times slower. More flexible)

• ELSE
• Lazy exact evaluation

• CGAL (20 times slower for reasonable construction depths)

• Hybrid arithmetic
• TMesh (3 times slower if constructions are sparse)

• Example app: TetWild

Arbitrary precision

• GNU GMP / MPIR
• int = type for integer numbers in the range [-INT_MAX, INT_MAX]

• Gmpz = type for arbitrarily large integer numbers
• A vector of int

a[0]a[1]a[2]a[3]…

𝑁 = ෍

𝑘=0

𝑛−1

𝑎 𝑘 ∗ 232𝑘

Arbitrary precision

• GNU GMP / MPIR
• int = type for integer numbers in the range [-INT_MAX, INT_MAX]

• Gmpz = type for arbitrarily large integer numbers
• A vector of int

a[0]a[1]a[2]a[3]…

𝑁 = ෍

𝑘=0

𝑛−1

𝑎 𝑘 ∗ 232𝑘

• Gmpq = type for rational numbers
• A pair of Gmpz = numerator/denominator

• Arbitrarily precise

Floating point expansions

• Used in Shewchuk’s predicates and in Levy’s Geogram
• double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]

• expansion = an arbitrarily precise floating point number
• A vector of double

• Not arbitrarily large. Overflows can still occur!

f[0]f[1]f[2]f[3]…

𝑁 = ෍

𝑘=0

𝑛−1

𝑓 𝑘

Floating point expansions

• Used in Shewchuk’s predicates and in Levy’s Geogram
• double = type for FP numbers in the range [-DBL_MAX, DBL_MAX]

• expansion = an arbitrarily precise floating point number
• A vector of double

• Not arbitrarily large. Overflows can still occur!

f[0]f[1]f[2]f[3]…

𝑁 = ෍

𝑘=0

𝑛−1

𝑓 𝑘
No need to multiply by2x. Exponent
is already in FP representation

Arithmetic on expansions

• Expansions can be summed, subtracted or multiplied
• Without any approximation error!

• Let |e| denote the «length» of an expansion e
• the number of double «components» to be summed to form N

• A double is an expansion of length 1

• The result of arithmetic operations has bounded length

| 𝑒1 + 𝑒2 | ≤ | 𝑒1| +| 𝑒2|

| 𝑒1 − 𝑒2 | ≤ | 𝑒1| +| 𝑒2|

| 𝑒1 ∗ 𝑒2 | ≤ 2| 𝑒1| | 𝑒2|

𝑁 = ෍

𝑘=0

𝑛−1

𝑓 𝑘

Geometric predicates with expansions

• Orient2d, orient3d, orient4d, incircle, insphere, …

• Each of them is the sign of a (low degree) polynomial
• Thus involving only +, -, * operations

• The sign of an expansion is the sign of its dominant component

• Still too slow
• We do not need the polynomial to be exactly evaluated…

• …as long as its sign is correct

• Calculate using standard floating point arithmetic
• Switch to expansion arithmetic only if unsure

Filters

• Let D be the value of the polynomial calculated using plain
floating point arithmetic

• D has a correct sign if it is far enough from zero
• How far?

Filters

• Sign(D) is correct if |D| > 

• Various filtering approaches
• Static filter:

•  is constant and depends on the polynomial only

• + Can be precomputed once for all at compile time. Very efficient

• - Too pessimistic -> too many switches to exact computation

• - Assumption on the range of input values

• Almost static filter:

•  is initialized based on optimistic assumptions

• It is adjusted if necessary

• Dynamic filter

•  depends on the actual accumulated rounding error based on the specific
input values

• + Extremely precise -> few switches to exact computation

• - Must be calculated at each call

• Multi-stage filters

Fast/unprecise

Slow/precise

Predicates in CGAL

• Extremely flexible and generic

• Precompute static filters

• Compute predicate with floating point arithmetic

• If result is uncertain (static filter fails):

Compute predicate with interval arithmetic (dynamic filter)

• If result is uncertain (dynamic filter fails):
Compute predicate with arbitrary precision arithmetic

Shewchuk’s predicates

• One of the fastest approaches

• Uses adaptivity
1. Evaluate polynomial using floating point arith

2. Use filter to check if precision is sufficient. If so, return

3. Increase precision (intermediate expansions) and re-use partial results
from (1)

4. Use 2nd stage filter. If precision sufficient, return

5. Increase precision and re-use partial results from (1) and (3)

6. …

7. If even last filter fails, switch to full expansion arithmetic and return

• Currently used in state-of-the-art 2D and 3D meshing software
• Triangle (J. R. Shewchuk)

• TetGEN (H. Si)

Expansions - summary

• Extremely fast

• Fully exploit FPU acceleration

• Pure C code - do not require external libraries

• Difficult to code
• Shewchuk’s predicates (orient2d, incircle, orient3d, insphere)

> 4200 lines of C code

• Set of expansions is closed under +, -, * operations
only

• Proposals to support division (Priest), but limitation is
intrinsic due to possible infinite representations (e.g. 1/3)

• Suitable only if exact constructions are not necessary

Interval Arithmetic

• The smallest floating point interval containing a real number x (e.g. the
result of an operation)

• Can be a single value (if x )

• The sign of a polynomial computed using intervals is certainly correct if
the interval does not contain the zero

• FPU rounding mode can be set to calculate tight intervals

• Provably efficient dynamic filter

Let a  , and let a,b  . [a,b] = {x  : a ≤ x ≤ b}

Exact constructions

• Naive approach
• Use exact arithmetic

• Lazy evaluation
• Arithmetic expressions

• Geometric expressions

[]

+

*

[]

3.
2

1.
5

1
3

if (collinear(a',m',b'))
if (n' < m')

midpoint

intersect projection

([], [])

([], [])([], []) ([], [])

bs1
s2 l

m'

i' p'

p

a

s1

s2

l

m

i

b

n'

Lazy number = interval and arithmetic

expression tree

Lazy object = approximated object and

geometric operation tree

Test that may trigger an exact re-evaluation:

(3.2 + 1.5) * 13

CGAL::Lazy_kernel<NT>

TMesh hybrid kernel – basic type

• What if exact constructions are needed at sparse spots only?

• Polymorphic number type PM_Rational (alias coord)
• Internally, a PM_Rational can be either a double or an exact rational number

• This underlying representation is called the «subtype» of the PM_Rational

• Interoperability is guaranteed and transparent

• Example:
• a, b and c are all PM_Rational

• The subtypes of ‘a’ and ‘b’ are double and rational respectively

• The expression c = a + b is valid

• The subtype of ‘c’ depends on the current «precision level»

• Precision level can be changed by the program at runtime

TMesh hybrid kernel

• Precision level
• Determines the subtype of newly created PM_Rationals

• Can be either «rational» or «floating point»

• It is a program/thread state

• Subtype (double or rational)
• Existing PM_Rational objects maintain their subtype

• The subtype of new objects depends on current precision level

• Result of a comparison/predicate
• Always exact, independently of the subtype of operands

• Speed depends on subtype of operands

• Result of a construction
• Constructions are arithmetic only

• Exact if current precision level is «rational»

Using TMesh in your program

• Download and compile TMesh
• https://github.com/MarcoAttene/TMesh_Kernel

• Configure your program code to use TMesh
• paths to headers, static lib, program initialization

https://github.com/MarcoAttene/TMesh_Kernel

Using TMesh in your program

Basic 3D geometry in TMesh

Precision level and predicates

Precision level and predicates

Precision level and predicates

Behind the scenes

• Multiple technologies are integrated in Tmesh
• Arithmetic Filtering

• Floating Point Expansions

• «a la Shewchuk» adaptive predicates

• Intervals

• Lazy evaluation (thread safe)

• Kernel may need to dynamically change FPU rounding mode

Predicate evaluation in TMesh

1. Check the subtype of all the parameters

2. IF all of them are double
1. Use «a la Shewchuk» adaptive evaluation

3. ELSE
1. Convert all parameters to intervals

2. Evaluate predicate using intervals

3. IF resulting interval contains zero

1. Convert all parameters to rational numbers

2. Evaluate predicate exactly

M. Attene (2017). ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel. LNCS Transactions on
Computational Science XXIX, Vol. 10220, pp. 86-96 (Springer)

Conclusions

To successfully implement a geometric algorithm

Carefully assess assumptions on input and numerical processes

• Invalid/unexpected input
• Can I reasonably repair the input to make it valid?

• Can I tolerate a small distortion everywhere?

• What class of models is my algorithm designed for?

• Inaccurate process
• If there are numerical errors, are they catastrophic?

• If so, do I need intermediate constructions to determine the program flow?

• If so, are these constructions sparse wrt the overall data to be processed?

Open Positions at IMATI-CNR

• WHAT: 3D Shape Design and Analysis for Digital Fabrication

• WHO: Myself and a vibrant research group

• WHEN: Application deadline: Sept 13. Start: ~ mid October. Duration: 1-2 years

• WHY: Because you love geometry processing and 3D printing

• WHERE: Genova (Intl. Airport C. Colombo)

More at: www.imati.cnr.it -> opportunities

http://www.imati.cnr.it/

Thank you

Time for questions

More at: www.imati.cnr.it -> opportunities

http://www.imati.cnr.it/

Thank you

Time for questions

More at: www.imati.cnr.it -> opportunities

http://www.imati.cnr.it/

