Topology Optimization for Computational Fabrication

Jun Wu Depart. of Design Engineering Delft University of Technology

Bone Chair by Joris Laarman

Optimization of Bone Chair by Lothar Harzheim & Opel GmbH

More Examples

- Lightweight design -> material cost, operational cost, environmental impact
- Byproduct: Organic shapes!

Frustum Inc.

Airbus APWorks, 2016

Qatar national convention

Schedule

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing

Classes of Structural Optimization: Sizing, Shape, Topology

A Toy Problem

• Design the stiffest shape, by placing 60 Lego blocks into a grid of 20×10

A Toy Problem: Possible Solutions

• Number of possible designs

$$- C(200,60) = \frac{200!}{60!(200-60)!} = 7.04 \times 10^{51}$$

• Which one is the stiffest?

A Toy Problem: Possible Solutions

• Which one is the stiffest?

A Toy Problem: Possible Solutions

• Which one is the stiffest?

Topology Optimization Animation

Minimize: Subject to:

$$c = \frac{1}{2}U^T K U \quad \longleftarrow \quad \text{Elastic energy}$$
$$K U = F \quad \longleftarrow \quad \text{Static equation}$$

$$c = \frac{1}{2}fu = \frac{1}{2}ku^2$$
$$ku = f$$

Minimize: $c = \frac{1}{2} U^T K U$ Elastic energySubject to:KU = FStatic equation

$$\rho_{i} = \begin{cases} 1 \text{ (solid)} \\ 0 \text{ (void)} \end{cases}, \forall i \text{ Design variables} \\ g = \sum_{i} \rho_{i} - V_{0} \leq 0 \text{ Volume constraint} \end{cases}$$

Minimize: $c = \frac{1}{2}U^T K U$

Subject to: KU = F

Topology Optimization Animation

Relaxation: Discrete to Continuous

Minimize: $c = \frac{1}{2} I I^T K I I$

Subject to:

$$C = \frac{1}{2}O \quad KO$$
$$KU = F$$

$$\rho_{i} = \begin{cases} 1 \text{ (solid)} \\ 0 \text{ (void)}, \forall i \end{cases} \implies \rho_{i} \in [0, 1]$$
$$g = \sum_{i} \rho_{i} - V_{0} \leq 0$$

(Difficult) binary problem \rightarrow (easier) continuous problem, solved by • gradient-based optimization

How to mechanically interpret the intermediate value [0, 1]?

- Linear interpolation of Young's modulus? i.e. $E(\rho) = \rho \overline{E}, \rho \in [0,1]$
 - Mechanically not possible (it doesn't comply with Hashin-Shtrikman bounds)

p=2

- No convergence to black/white structure
- Solid isotropic material with penalization $E(\rho) = \rho^p \overline{E}, p \ge 1$
 - p = 3, satisfy Hashin-Shtrikman bounds
 - Promote black/white design

Sensitivity Analysis

- Sensitivity: The derivative of a function with respect to design variables
- $\frac{\partial c}{\partial \rho_i} = -\frac{p}{2}\rho_i^{p-1}u_i^T \overline{K}u_i$
 - Smaller than zero
- $\frac{\partial g}{\partial \rho_i} = 1$

 $\begin{array}{ll} \text{Minimize:} & c = \frac{1}{2} U^T K U \\ \text{Subject to:} & K U = F \\ & \rho_i \in [0\,,1] \\ & g = \sum_i \rho_i - V_0 \leq 0 \end{array}$

Design Update

- Mathematical programming
 - Interior point method (IPOPT package)
 - The method of moving asymptotes (MMA)
- Optimality criterion
 - If " $-\frac{\partial c}{\partial \rho_i}$ " is large, increase ρ_i
 - Otherwise, decrease ρ_i
 - How to determine large or small?
 - Bisection search for a threshold

Demo - TopOpt

- Android, iOS
- www.topopt.dtu.dk

Minimize:

Subject to:

$$KU = F$$

$$\rho_i \in [0,1], \forall i$$

$$g = \sum_i \rho_i - V_0 \le 0$$

 $c = \frac{1}{2} I I^T K I I$

A System for High-Resolution Topology Optimization

Jun Wu, Christian Dick, Rüdiger Westermann

Giga-voxel full-scale wing design, Aage et al. 2017

- Narrow-Band Topology Optimization on a Sparsely Populated Grid
- Liu et al. 2018

Geometric Multigrid: Solving Ku = f

- Successively compute approximations u_m to the solution $u = \lim_{m \to \infty} u_m$
- Consider the problem on a hierarchy of successively coarser grids to accelerate convergence

Memory-Efficient Implementation on GPU

- On-the-fly assembly
 - Avoid storing matrices on the finest level
- Non-dyadic coarsening (i.e., 4:1 as opposed to 2:1)
 - Avoid storing matrices on the second finest level

Wu et al., TVCG'2016

29

Dick et al., SMPT'2011

High-Resolution Design

Resolution: 621 × 400 × 1000 #Element 14.2m Time: 12 minutes

Negative Poisson's ratio Larsen et al. 1997

Natural convection

Alexandersen et al. 2016

Negative thermal expansion Sigmund & Torquato 1996

Electric actuator Sigmund 2000

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing

What is additive manufacturing (3D printing)?

• Layered fabrication

www.mashed.com

Additive Manufacturing: Complexity is free

TU Delft & MX3D, 2015

Joshua Harker

Scott Summit

Complexity is free? ... Not really!

- Printer resolution: Minimum geometric feature size
- Layer-upon-layer: Supports for overhang region
- Closed cavities in powder-bed based printing
- Infill structures

Supports

Concept Laser GmhH

Infill

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
 - Geometric feature control by **density filters**
 - Geometric feature control by **alternative parameterizations**

Messerschmidt-Bölkow-Blohm (MBB) beam

Messerschmidt-Bölkow-Blohm (MBB) beam

Geometric feature control by density filters (An incomplete list)

Reference

Minimum feature size, Guest'04

Coating structure, Clausen'15

Self-supporting design, Langelaar'16

Porous infill, Wu'16

Infill in 3D Printing: Regular Structures

Can we apply the principle of bone to 3D printing?

Topology Optimization Applied to Design Infill

Topology optimization

Infill in the bone

Topology Optimization Applied to Design Infill

- Materials accumulate to "important" regions
- The total volume $\sum_i \rho_i v_i \le V_0$ does not restrict local material distribution

Infill in the bone

Bone-like Infill in 2D

Cross-section of a human femur

Approaching Bone-like Structures: The Idea

Impose **local constraints** to avoid fully solid regions ullet

Min:
$$c = \frac{1}{2} U^T K U$$

s.t.: $KU = F$
 $\rho_i \in [0,1], \forall i$
 $\sum_i \rho_i \leq v_0$
 $\widehat{\rho_i} \leq \alpha, \forall i$

Local-volume measure

$$\hat{\rho_i} = 0.0$$

 $\widehat{\rho_i} = 0.6$

 $\widehat{\rho_i} = 1.0$

Constraints Aggregation (Reduce the Number of Constraints)

α

$$\widehat{\rho_i} \leq \alpha, \forall i \quad \Longrightarrow \quad \max_{i=1,\dots,n} |\widehat{\rho_i}| \leq 1$$

$$\lim_{p \to \infty} \|\rho\|_p = \left(\sum_i (\widehat{\rho_i})^p\right)^{\frac{1}{p}} \le \alpha$$

Too many constraints!

A single constraint But non-differentiable A single constraint and differentiable Approximated with p = 16

Optimization Process: The same as in the standard topopt

Impose **local constraints** to avoid fully solid regions ullet

Local-volume measure

A)

50

Effects of Filter Radius and Local Volume Upper Bound

Local + Global Volume Constraints

··· ··**/-**

Robustness wrt. Force Variations

• Porous structures are significantly stiffer (126%) in case of force variations

Robustness wrt. Material Deficiency

• Porous structures are significantly stiffer (180%) in case of material deficiency

c = 76.83 c' =242.77

Total volume constraint

Local volume constraints

c = 93.48 c'= 134.84

Bone-like Infill in 3D

Infill in the bone

Optimized bone-like infill

FDM Prints

Geometric feature control by density filters (An incomplete list)

Reference

Minimum feature size, Guest'04

Self-supporting design, Langelaar'16

Porous infill, Wu'16

Concurrent Shell-Infill Optimization

Concurrent Shell-Infill Optimization

Wu et al., CMAME 2017

Homogenization-based Approach

Groen et al. CMAME 2019

3D Conforming Lattice Structures

From left to right: Given a design domain with specified external loads, our method optimizes the distribution of lattice materials for maximizing stiffness. From the optimized, locally-defined lattice configuration, a globally connected lattice structure is compiled, and fabricated by 3D printing.

ŤUDelft

Topology optimization + field-aligned meshing

Topology optimization + field-aligned meshing

Lattice by field-aligned meshing vs. by density approach with local volume constraints

Field-aligned meshing

Compliance: 177.29

Computation time: 1 minute 7 seconds

Density approach

40 minutes

68

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
 - Geometric feature control by **density filters**
 - Geometric feature control by **alternative parameterizations**

Geometric feature control by alternative parameterizations (An incomplete list)

Offset surfaces, Musialski'15

Ray representation, Wu'16

Overhang in Additive Manufacturing

• Support structures are needed beneath overhang surfaces

https://www.protolabs.com/blog/tag/directmetal-laser-sintering/ 72

Support Structures in Cavities

• Post-processing of inner supports is problematic

Infill & Optimization Shall Integrate

Solid, Unbalanced Optimized, Balanced With infill, Unbalanced

The Idea

- Rhombic cell: to ensure self-supporting
- Adaptive subdivision: as design variable in optimization

Rhombic cell

Adaptive subdivision

Self-Supporting Rhombic Infill: Workflow

Self-Supporting Rhombic Infill: Results

- Optimized mechanical properties, compared to regular infill
- No additional inner supports needed

Wu et al., CAD'2016

Mechanical Tests

Under same force (62 N)

Dis. 2.11 mm

Dis. 4.08 mm

Under same displacement (3.0 mm)

Force 90 N

Force 58 N
Questions

- Can we re-formulate it as a continuous problem?
- The continuous formulation possibly comes to a more optimal solution?
- To verify how good or bad the greedy approach is.

Method

Multi-level Design Variables $x_{i,j}^k$

• Design variables on the k-th level $x_{i,j}^k \in [0,1]$

Level 1: 4×2

Level 2: 8×4

Multi-level Design Variables $x_{i,j}^k$

• Design variables on the k-th level $x_{i,j}^k \in [0,1]$

Level 1: 4×2

Level 3: 16×8

Finite Elements ρ

- Uniform finite elements, mapped from the quadtree grid
 - Density of corresponding finite elements $\rho = x_{i,j}^k \in [0,1]$

Finite element grid

Quadtree grid

Optimization Problem: Minimum Compliance

- min: $c = \boldsymbol{U}^T \boldsymbol{K}(\boldsymbol{\rho}) \boldsymbol{U}$
- s.t. $K(\rho)U = F$
- $V(\boldsymbol{\rho}) = \sum_{\forall e} \rho_e v_e \le V^*$
- $x_{i,j}^k \in [0,1]$ • $\boldsymbol{\rho} = \sum_{k=0}^{\overline{k}} \mathbf{T}^k \mathbf{x}^k$

Result 1

• Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1})$

- Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i-1,j-1}^{k-1})$
- Among multiple levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, \dots, x_{i^{-k+1},j^{-k+1}}^1)$

- Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i-1,j-1}^{k-1})$
- Among multiple levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, \dots, x_{i^{-k+1},j^{-k+1}}^1)$

Invalid refinement

Valid refinement

- Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1})$
- Among multiple levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, \dots, x_{i^{-k+1},j^{-k+1}}^1)$
- Continuous approximation

$$\tilde{x}_{i,j}^k \approx \left\| \left(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, \dots, x_{i^{-k+1},j^{-k+1}}^1 \right) \right\|_{p_n}$$

Result 2

Refinement Filter: Balanced Quadtree

- Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i-1,j-1}^{k-1})$
- Dependency among two levels for balanced quadtree $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, x_{i^{-1}\pm 1,j^{-1}\pm 1}^{k-1})$

Refinement Filter: Balanced Quadtree

- Dependency among two levels $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1})$
- Dependency among two levels for balanced quadtree $\tilde{x}_{i,j}^k = \min(x_{i,j}^k, x_{i^{-1},j^{-1}}^{k-1}, x_{i^{-1}\pm 1,j^{-1}\pm 1}^{k-1})$

Refinement Filter: Balanced Quadtree

Comparison: Designed force

Unexpected force

• Quadtree is robust to unexpected force

Results

Results: Animation

Results: Convergence

Results: Convergence

- Objective min: $c = U^T K(\rho) U$
- Volume $V(\boldsymbol{\rho}) = \sum_{\forall e} \rho_e v_e \le V^*$
- Sharpness $s = \frac{4}{n} \sum_{e} (\rho_e (1 \rho_e))$

Results: Feature Size

• Control feature size by allowing different refinement levels

Results: Comparison

 Continuous optimization achieves more optimal solution than the heuristic approach

Greedy approach

Continuous optimization

Results: Fabrication

Results: Fabrication

Results: Fabrication

• Adaptively refined infill is much stiffer than uniform infill

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
 - Geometric feature control by **density filters**
 - Geometric feature control by **alternative parameterizations**

Self-supporting infill

Topology Optimization

- Lightweight
- Free-form shape
- Customization
- Mechanically optimized
- ...

Additive Manufacturing

- Customization
- Geometric complexity

• . . .

Research topics

- Multiscale structural optimization
 - Homogenization

- Integrating manufacturing constraints (and process simulation)
 - Overhang, process planning, toolpath, anisotropic behavior etc
- Novel applications -> unconventional design objectives
 - Soft robotics, implants, 4d printing, shape morphing etc
- Optimality, convergence, stress constraint etc
- Geometric perspective in topology optimization
 - Alternative parameterizations for elasticity analysis
 - Alternative design parameterizations
 - Meshing for designing lattice structures

Reducing Out-of-Plane Deformation of Soft Robotic Actuators for Grasping Stability

Rob B.N. Scharff, Jun Wu, Jo M.P. Geraedts and Charlie C.L. Wang

Matlab code

- Download top.m or top88.m
 - <u>www.topopt.dtu.dk</u> -> Choose Applets and Software
 - Select "Matlab Program" (top.m) or "New Matlab Program" (top88.m)
- Start Matlab, and run the default MMB-example
- top88(nelx, nely, volfrac, penal, rmin, ft)
 - top88(80, 40, 0.3, 3, 1.6, 1)
- top(nelx, nely, volfrac, penal, rmin)
 - top(80, 40, 0.3, 3, 1.6)

Node & element numbering and degrees of freedom to (dofs)

9 Center for Acoustic-Mechanical Micro Systems (CAMM) Jakob Søndergaard Jensen

- F = sparse(2, 1, -1, 2*(nely+1)*(nelx+1), 1);
- fixeddofs = union([1:2:2*(nely+1)], [2*(nelx+1)*(nely+1)]);

- iForce1 = (nely+1)*2*nelx/3+2;
- iForce2 = (nely+1)*2*nelx*2/3+2;
- iF = [iForce1 iForce2];
- jF = [1 1];
- vF = [-1 -1];
- F = sparse(iF, jF, vF, 2*(nely+1)*(nelx+1), 1);
- iFix1 = [(2*(nely+1)-2):2*(nely+1)];
- iFix2 = [(2*(nelx+1)*(nely+1)-2):2*(nelx+1)*(nely+1)];
- fixeddofs = union(iFix1, iFix2);

Exercise 1: Set distributed loads

- iF = -----
- jF = -----
- vF = -----
- F = sparse(iF, jF, vF, 2*(nely+1)*(nelx+1), 1);

Exercise 2: Set multiple load cases

- Set two loads which are applied alternatively
- Compare to the situation where the two loads applied at the same time
- Min: $c = \frac{1}{2}U_1^T K U_1 + \frac{1}{2}U_2^T K U_2$
- s.t. : $KU_1 = F_1$
- $KU_2 = F_2$
- $\rho_i \in [0,1], \forall i$
- $\sum_i \rho_i \le V_0$

Exercise 3: Integrate a different solver for infill optimization

- Download infill.m or topQuadtreeOC.m
- Replace the MMA solver by, e.g IPOPT

Thank you for your attention!

Jun Wu Depart. of Design Engineering, TU Delft www.jun-wu.net j.wu-1@tudelft.nl

